Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конформационная зависимость кон

Рис. 117. Определение температуры конформационного перехода активного центра а-трипсина по температурной зависимости эффективной константы скорости ультразвуковой инактивации фермента Рис. 117. <a href="/info/14234">Определение температуры</a> <a href="/info/283300">конформационного перехода</a> <a href="/info/5969">активного центра</a> а-трипсина по <a href="/info/706136">температурной зависимости эффективной</a> <a href="/info/3323">константы скорости</a> ультразвуковой инактивации фермента

Рис. 116. Определение температуры конформационного перехода активного центра а-химотрипсина по температурной зависимости эффективной константы скорости инактивации фермента под действием ультразвука Рис. 116. <a href="/info/14234">Определение температуры</a> <a href="/info/283300">конформационного перехода</a> <a href="/info/5969">активного центра</a> а-химотрипсина по <a href="/info/706136">температурной зависимости эффективной</a> <a href="/info/3323">константы скорости</a> <a href="/info/221316">инактивации фермента</a> под действием ультразвука
    В газовой фазе доля более напряженных конформаций, в том числе и некоторых г-конформаций для Сб-дегидроциклизации, тем меньше, чем выше их напряженность. Как уже указывалось (см. разд. 1.2), конформации одного вещества более или менее быстро переходят друг в друга, однако при постоянной температуре их соотношение не меняется. На поверхности катализатора из-за адсорбции молекулы могут оказаться временно зафиксированными в /"-конформации, т. е. при таком расположении главной углеводородной цепи, которое энергетически невыгодно, но зато пространственно наиболее благоприятно для образования переходного состояния. В то же время, чем более напряжена г-конформация, тем менее прочно ее фиксирование, короче продолжительность жизни на поверхности катализатора, а следовательно, меньше вероятность прореагировать. Соответственно, меньше будет предэкспоненциальный член уравнения Аррениуса. Если же при этом реакция идет ио нулевому порядку и энергии активации для Сб-дегидроциклизации разных углеводородов одинаковы, то между значениями энергии перехода от обычных к г-кон-формациям и выходами продуктов реакции должна быть антибатная зависимость. При сопоставлении таких энергий перехода, вычисленных А. Л. Либерманом из конформационных данных, с выходами циклопентанов при Сб-дегидроциклизации, найденными авторами книги экспериментально, действительно обнаружилась ожидаемая антибатная зависимость  [c.213]

    Релаксационный характер механических свойств и физических состояний полимеров. Специфика полимеров заключается не только в проявляющейся при определенных условиях способности к большим обратимым деформациям, но также в том, что их механические свойства носят резко выраженный релаксационный характер, т. е. сильно зависят от временной, а в случае периодических деформаций, от частотной шкалы. Эта. зависимость, как и высокоэластичность, является следствием длинноцепочечного строения полимеров и обусловлена необходимостью длительных промежутков времени (времен релаксации) для конформационной перестройки большого числа связанных ме.жду собой структурных элементов цепи при переходе ее из одного равновесного состояния в другое. Время релаксации является функцией температуры и за- [c.40]


    Все белки, изученные до сих пор, обладают антигенными св-вами. У белков различают линейные детерминанты, построенные из аминокислотных остатков, расположенных рядом в одном участке полипептидной цепи, и конформационные, к-рые слагаются из аминокислотных остатков разных участков одной или большего числа полипептидных цепей. Антитела, полученные при иммунизации данного животного определенным белком, могут реагировать, хотя и с небольшим сродством, с нек-рыми пептидами, выделенными из гидролизата зтого белка. Такие пептиды, построенные из 5-7 остатков, часто располагаются на изгибах или выступающих отрезках пептидной цепи и, очевидно, являются детерминантами или их частями. Однако в иных условиях, напр, при иммунизации др. вида животного, могут образовываться антитела к иным участкам молекулы того же белкового А. Практически вся пов-сть белковых молекул обладает антигенными св-вами, она, т. обр., представляет собой сумму перекрывающихся детерминант, каждая из к-рых может вызывать иммунную р-цию или не вызывать ее в конкретных условиях. Последние определяются различиями в строении между белковым А, и собственными белками организма, а также регуляторными иммунными механизмами, находящимися под генетич. контролем. По-видимому, почти все детерминанты белков конформационно зависимы. Согласно данным рентгеноструктурного анализа, антигенные детерминанты обладают повыш. подвижностью. [c.174]

    В другой работе [15] была изучена конформационная зависимость химического сдвига карбинольного углерода [c.74]

    Таким образом, учет конформационных взаимодействий, возникающих при адсорбции молекул на поверхности катализатора, позволяет более ясно представить строение переходных комплексов, образующихся в ходе гидрогенолиза циклобутанов. Следовательно, в зависимости от условий эксперимента и объектов исследования на каждом из изученных катализаторов в той или иной мере осуществляется и реберная, и плоскостная адсорбция. [c.119]

    В таблице 7 приведена температурная зависимость констант скоростей прямой и обратной реакций конформационного изменения молекулы а-химотрипсина [7]. Вычислить значения стандартных энтальпии и энтропии активации прямого (й/) и обратного (кг) процесса. [c.255]

    Поэтому зависимость Гпл от прилагаемого напряжения имеет вид, изображенный на рис. VI. 24, а. Зависимость эта имеет немонотонный характер, если макромолекулы претерпевают конформационный переход типа спираль — клубок, в результате которого их гибкость увеличивается (рис. VI. 24, б). Напротив, в силу причин, которые должны быть читателю очевидны, при растяжении ориентированного полимера в направлении, перпендикулярном оси ориентации, 7пл убывает с напряжением, как это показано на рис. VI. 24, в. [c.225]

    Механизм влияния кристаллизации на температуру размораживания сегментальной подвижности в аморфных областях полимера рассмотрен Манделькерном [45]. В процессе образования кристаллитов в образующейся кристаллической фазе заметно возрастает плотность полимера, что приводит к деформации аморфных областей, уменьшению возможного конформационного набора для находящихся в них макромолекул и к увеличению времени релаксации процесса их сегментальной подвижности. В связи с этим представляет интерес оценка характера зависимости температуры размораживания сегментальной подвижности в аморфной фазе полимера от степени его кристалличности 2.6]. Для этого рассмотрим 1 моль сегментов аморфной фазы, занимающий объем V. В процессе кристаллизации полимера его аморфная фаза подвергается деформации. Допустим, что эта деформация носит характер всестороннего расширения (или сжатия). Добавочное отрицательное давление, вызывающее это расширение, [c.56]

    В таблице 11 приведена температурная зависимость эффективной константы скорости инактивации а-химотрипсина под действием ультразвука [1]. Найти температуру конформационного перехода (Тс) и рассчитать значения энтальпии и энтропии кон- [c.257]

    В таблице 12 приведена температурная зависимость эффективной константы скорости инактивации а-трипсина под действием ультразвука. Найти температуру конформационного перехода и рассчитать значения энтальпии и энтропии конформационного перехода активного центра фермента. [c.258]

    В зависимости от природы растворителя и природы полимера, а также от способности макромолекул к конформационным превращениям, например от степени гибкости макромолекулярных цепей, макромолекулы в растворах могут находиться в разных состояниях. [c.333]

    Между этими крайними случаями имеется множество промежуточных. Соприкосновение раствора полимера с поверхностью даже непористого тела может привести к сильной или слабой адсорбции в зависимости от химии поверхности твердого тела, определяющей межмолекулярное взаимодействие с адсорбентом как звеньев макромолекул, так и молекул растворителя. Здесь сказываются те же факторы, влияние которых на адсорбцию из растворов и хроматографию обычных молекул было рассмотрено в лекциях 14, 16 и 17 для адсорбции и хроматографии молекул обычных размеров. Однако степень конформационной подвижности макромолекул зависит от разветвленности цепей, возможности и характера их сшивки, а также взаимной ассоциации, значение которых быстро возрастает с увеличением молекулярной массы полимера. Большое значение имеет распределение и природа функциональных групп в макромолекулах. [c.333]


    Для установления роли данных ионогенных групп лизоцима в катализе и (или) в поддержании каталитически активной конформации активного центра в работе [64] была изучена рН-зави-симость инактивации лизоцима нод действием ультразвука. Как видно из рис. 22, группа с рК 5,0, контролирующая каталитическую активност лизоцима, не проявляется в рН-зависимости константы скорости инактивации фермента под действием ультразвука. Следовательно, протонирование этой группы не приводит к какому-либо существенному конформационному изменению в активном центре лизоцима, хотя и делает фермент каталитически неактивным. С другой стороны, ионогенные группы фермента с рК<2 и рК в области 9—11 контролируют конформационную [c.199]

    Рассуждая тем же способом, можно предсказать, что в случае гиперконъюгативного взаимодействия с акцептором электронов уменьшится вклад С и увеличится вклад В, а вклады Л и ) в первом приближении опять не изменяется. Но из-за меньшей разности энергий изменения вклада С будут иметь большее значение и константа взаимодействия станет более отрицательной. Это также подтверждается экспериментально (табл. IV. 10, рис. IV. 21). Резкое увеличение величины геминальной константы в формальдегиде представляет особенно впечатляющий пример применимости простой МО-модели. Здесь — /-эффект атома кислорода и гиперконъюгативный перенос заряда с несвязывающих орбитателей неподеленных электронных пар на группу СНг усиливают друг друга. Аналогичным образом гиперконъюгация в циклических простых эфирах приводит к положительным изменениям /. Наконец, с этих позиций становится понятной и описанная выше конформационная зависимость влияния я-связей и свободных электронных пар на /. Их электронное взаимодействие с орбиталью Та определяется величиной СОЗ где ф — угол между осью г и осью орбитали заместителя. [c.121]

Рис. IV. 28, Конформационная зависимость аллильного спин-спинового взаимодействия Стерн-хелл [101). Рис. IV. 28, Конформационная зависимость <a href="/info/131990">аллильного спин-спинового взаимодействия</a> Стерн-хелл [101).
    Для гомоаллилъной константы /нн, наблюдаемой в структурных фрагментах НС—С=С—СН, конформационная зависимость совершенно аналогична только что обсуждавшейся выше для /. Однако, поскольку /(л ) имеет положительный знак (см. уравнение IV. 35), а- и я-вклады в складываются. [c.135]

    Измепепия длины и ЗП С—0Н+—связи показывает сильную сте-реоэлектроииую конформационную зависимость, дающую около половины эффекта протонирования (ср. I и 4). Наиболее ослаблена С --ОТП...... [c.100]

    Наиболее конформационно чувствительной является полоса Амид V [1087, 1088, 1161]. В спектре а-модификации полиамида-6 эта полоса лежит при 691 см , а в спектре у-модификации — при 712 см . В спектре других полиамидов эта полоса смещается лишь на несколько см" от приведенных значений. Для аморфных полиамидов полоса Амид V лежит при 700 см [367]. В спектрах дейтерированных полиамидов эти полосы смещаются к 493 см (для а-модификации) и к 530 см" (для у-модификации) [808, 1479]. Изотопное соотношение порядка 1,35 указывает на то, что имеют место деформационные колебания почти свободной NH-группы перпендикулярно к плоскости амидной группы. Дейтерирование атомов водорода, связанных с а-углеродным атомом, лишь немного влияет на эти колебания [627]. Приведенные факты, а также четкая конформационная зависимость колебаний, соответствующих полосе Амид V, показывают, что эти колебания связаны со структурой всей амидной группы. [c.324]

    В настоящее время описаны спектры протонного магнитного резонанса большого числа функционально замещенных олефинов /1-26/ и гетероэтиленов,содержащих связь G-N- /27-35/.в ряде случаев обнаружена высокая чувствительность констант экранирования олефиновых протонов к влияни заместителей и показана возможность интерпретации полученных данных в рамках корреляционного и квантово-химического подходов /1,7-12/.Что же касается химических сдвигов протонов метильной группы связанной с зр гибридным атомом углерода в таких системах, то последние изучались до сих пор главным образом в связи с установлением конформационной зависимости параметров ПМР-спектров.Вопросы механизма передачи электронных влияний на протоны метильной группы пока не [c.380]

    Константы равновесия в том и другом случае отличаются незначительно (в 2—4 раза). В то же время при переходе от профлавина к родамину 6Q процесс комплексообразования красителя с активным центром замедляется почти в 10 paat Структуры молекул этих лигандов различаются в основном лишь тем, что молекула родамина 6Q содержит дополнительное бензольное кольцо. Как показало изучение температурной зависимости кинетики комплексообразования, энергия активации этого процесса порядка 17 ккал/моль (71,4 кДж/моль). С другой, стороны, известна, что энергия активации процессов, контролируемых диффузией, не превышает, как правило, 5 ккал/моль (21 кДж/моль) [62, 63]. Поэтому следует заключить, что образование комплекса химотрипсина с более объемной молекулой родамина 6G возможно лишь в результате конформационных изменений в молекуле фермента. Такой механизм (1.8) комплексообразования органических молекул с белками, по-видимому, весьма распространен. [c.31]

    Серьезные конформационно-зависимые модификации претерпевают и фотохимические реакции. Например, квантовые выходы инактивации ацетилхолинэстеразы в свободном состоянии и в составе мембраны значительно различаются между собой. Мембрана тормозит фотоокисление липидов изменение энтропии активации перехода люмиродопсин— -метародопсин I в мембранах палочек в 2 раза меньше, чем в дигитониновых экстрактах. Следовательно, мембрана может ускорять или замедлять фотохимические реакции и даже менять их направление в зависимости от биологической целесообразности . [c.375]

    Рассмотрим конформационное объяснение этого явления. Следует предупредить читателей, что правильное решение было найдено не сразу, оно длительное время совершенствовалось, а потому в разных монографиях излагалось по-разному в зависимости от времени их выпуска. Наиболее современное описание дано в книгах [60, 61], однако в русском переводе монографии Илиела и др. [60, с. 52] допущена неточность, которая легко может запутать недостаточно искущенного читателя, а изложение в [61], рассчитанное на специалистов, несколько сложно. Поэтому придется уделить здесь конформациям циклогексана особое внимание, тем более что после этого будет легче понять конформационную трактовку свойств других цикланов. [c.38]

    Вместе с тем, если для реакции 1,2-цис—>-1,2-транс характерно выделение тепла и высокая константа равновесия, то для аналогичной реакции 1,3-диалкилзамещенных — поглощение тепла и низкая константа равновесия. Соответственно в равновесных смесях 1,2-диалкилзамещенных будет больше трансизомера, а в смесях 1,3-диалкилзамещенных — цис-изомера. Различная термодинамическая устойчивость транс- и цис-изо-меров в зависимости от расстояния между алкильными заместителями объясняется с позиций конформационного анализа высокой устойчивостью только таких структур, в которых минимально отталкивающее взаимодействие несвязанных атомов. Ясно, что такое взаимодействие будет весьма значительным для 1,2-цис-, но не для 1,3-цис-структур. Расчеты показывают, что в 1,2-диметилциклопентанах содержание цис-изомера составляет только 5%, в то время как для 1,3-диметилзамещен-ных —уже 62%. Отметим сразу, что с позиций конформационного анализа трудно объяснить большую термодинамическую устойчивость 1,3-цис по сравнению с 1,3-транс-изонерами. В экспериментальных исследованиях достигаемое соотношение этих изомеров близко к единице [35, 36], вследствие чего нет уверенности в точном определении термодинамических параметров [c.196]

    Роль энтропийного фактора (Д5т ), как это следует из самой природы формулы (1), становится особенно заметной при повышенных температурах. Поэтому приведенные в табл. 1—5 данные по равновесным концентрациям стереоизомеров при 500—бОО Кважны тем, что они учитывают сложную зависимость между строением и энтропией углеводородов. В то же время при более низких температурах разница в свободных энергиях пространственных изомеров, особенно для относительно простых структур, может быть достаточно точно определена на основании некоторых обш их положений конформационного анализа. Так, например, разницу в энергетическом содержании цис- и пракс-1,2-диметилциклопен-танов можно приравнять разнице в энергиях между заслоненной (характерно для г йс-вицинального расположения заместителей 5300 кал/молъ) и частично заслоненной (характерно для транс-вицинального расположения заместителей 3500 кал/молъ) бута-новыми конформациями. Энергетически эта разница соответствует двум скошенным (гом) бутановым конформациям и составляет примерно 1800 кал моль. [c.25]

    Как уже было отмечено, в аморфных кремнеземах кремний-кислородные тетраэдры расположены не регулярно, а образуют цепи и циклы с разным числом членов и разной степенью напряженности. Эта напряженность кремний-кислородных связей изменяется с изменением размеров и конформации кремний-кислород-ных циклов, происходящем при нагревании. При конденсационных и конформационных превращениях выделяется вода преимущественно за счет соседних силанольных групп. Эти группы могут, однако, входить в разные кремний-кислородные цепи и циклы. Поэтому часть силанольных групп остается вн утри скелета кремнезема, а другая часть —на поверхности пор. Соотношение между внутриглобульными (внутрискелетными) и поверхностными сила-нольными группами изменяется в зависимости от условий пол уче-ния и обработки кремнезема. [c.52]

    Разработан также ряд быстрорегистрирующих спектрофото-метрических установок. Данные приборы используют два основных принципа комбинацию спектрофотометра с кюветой остановлен ной струи и комбинацию спектрофотометра с устройством для температурного скачка. На этих приборах в основном изучается кинетика быстрых ферментативных реакций, быстрых конформацион-ных переходов в биологических молекулах, температурных зависимостей многих процессов жизнедеятельности клетки и т. п. [c.16]

    Последующее молекулярное описание одноосного деформирования неориентированного частично кристаллического полиэтилена характеризует пластическую деформацию волокон, образующих термопласты со сферолитной структурой. Оно может служить иллюстрацией большого разнообразия механизмов деформирования. При деформациях менее 1 % выявляют анизотропные упругие свойства кристаллов (орторомбического) полиэтилена [57] и аморфного материала [53]. При тех же самых условиях имеют место неупругие деформации СНг-групп и сегментов цепей, которые обусловливают низкотемпературные Р-, у- и б-релаксационные механизмы [10, 56]. При больших деформациях (1—5%) происходит дополнительное изменение сегментов цепи, их относительного положения и конформационные изменения (поворот связей). Подробное исследование поведения цепей в аморфных областях было выполнено Петракконе и др. [53]. В кристаллических областях под действием деформаций такого же порядка возникают дислокации и дислокационные сетки (наблюдаемые в ламеллярных кристаллах в виде муаровых узоров). В зависимости от условий внешнего нагружения и типа дислокаций их движение вызывает пластическую деформацию кристалла путем двойникования, смещения плоскостей или фазового перехода орторомбической ячейки в моноклинную. Обширный обзор деформирования полимерных монокристаллов был дан Зауэром и др. [57] и в книге Вундерлиха [3]. Детальный расчет вклада различных структурных элементов и дефектов в деформирование частично-кристаллических полимеров можно найти во многих статьях, из которых здесь приводятся только некоторые [47—62]. Хотя упомянутые выше эффекты обусловливают нелинейность зависимости напряжение—деформация, первоначально существовавшая надмолекулярная организация все еще сохраняется. Подобная деформация называется однородной. [c.41]

    Механизмы искажения полос ИК-поглощения напряженных полимеров детально исследовались Губановым [7—9], Кособу-киным [13], Веттегренем и Новаком [15], а также Вулом [36]. Авторы этих работ пришли к общему согласию, что искаженный профиль полосы ИК-поглощения D(v) может быть связан с большим числом независимых осцилляторов, с сильным перекрытием полос поглощения, максимумы которых имеют различные частотные сдвиги. Показано, что возможные причины сдвига частоты отдельных осцилляторов под напряжением связаны с квазиупругим деформированием гармонического осциллятора (уменьшением силовой константы под действием напряжения), с увеличением упругости угловых связей, с изменениями конформационных состояний сегментов и образованием дефектов. В работах [4—16, 36] показано, что при малых деформациях первым трем механизмам вполне соответствует линейная зависимость частоты от молекулярного напряжения 1 5  [c.231]

    Если число разорванных цепных сегментов полностью соответствует определенному путем анализа числу концевых групп и если каждый сегмент разрывается при предельном значении напряжения, полученном с помощью анализа искаженных полос ИК-поглощения, то накопленные молекулярные напряжения будут сравнимы по порядку величины с приложенным макроскопическим напряжением. В таком случае следует предположить, что кроме конформационной перестройки и проскальзывания цепн заметное влияние на кривые напряжение—деформация оказывают акты разрыва цепи. Пока ленинградский материал ПП является единственным полимером, который оказался подходящим для обоих видов указанного выше ИК-ана-лиза. В приведенной литературе [4—33] отсутствуют ссылки на случаи объяснения зависимостей напряжения от дефор1ма-ции или от времени для данного материала ПП с учетом кинетики образования в нем концевых групп. [c.247]

    Следует отметить, что учет иммобилизационной способности асфальтеновых агрегатов позволяет дополнить теоретические представления по экспериментальным дан-нымдругих авторов. Так, например, в работах [148,149] в процессе пиролиза асфальтенов в токе гелия при непрерывном подъеме температуры со скоростью 25°С/мин определялось количество выделяемых жидких углеводородов. Показано, что выделение последних характеризуется экстремальной зависимостью. Начало выделения углеводородов происходит при 300-350° С, затем до 410-430°С скорость их выделения повышается, после чего снижается до полного прекращения при 550-600°С. Предлагаемый авторами вариант теоретического обоснования повышения выхода углеводородов заключается в предположении отрыва периферических алифатических и циклоалифатических фрагментов молекул и гетероатомных функциональных групп, вплоть до образования голоядерных ароматических молекуле 3-4 конденсированными ароматическими кольцами. Не подвергая сомнению возможность протекания реакций термической деструкции при повышении температуры, следует заметить, однако, что предложенный вариант механизма термических превращений не позволяет обосновать экстремальный характер зависимости выхода углеводородов. Более полное обоснование механизма термических превращений асфальтенов в данном случае можно связать с конформационными превращениями асфальтеновых агрегатов в процессе их нагрева, выделением при этом жидких углеводородов, иммобилизованных в межчастичном пространстве, при несомненном расщеплении длинных боковых радикалов и их отрыве от основного ядра агре гативной комбинации. Указанные процессы в конечном итоге приводят к уплотнению агрегативных комбинаций с образованием карбеновых и карбоидных структур. [c.134]

    Графики в координатах (1п , 1/7) или 1п, 1/гjдля ферментативных реакций зачастую имеют вид линии с изломами. Наличие подобных изломов на аррениусовской зависимости можно объяснить как сменой лимитирующей стадии реакции при изменении температуры, так и переходом активного центра молекулы фермента в узком температурном интервале в другое конформационное состояние, обладающее другой каталитической активностью. [c.266]

    На практике анализ зависимостей констант скоростей ферментативных реакций от температуры проводится аналогично анализу температурных зависимостей неферментативных реакций (см. гл. 4). Однако зачастую для реакций, катализируемых ферментами, график в координатах (1п к, 1/Г) или (1пА/7 , 1/Г) имеет вид линии с изломами. Наличие подобных изломов на аррениусовской зависимости можно объяснить как смено лимитирующей стадии реакции при изменении температуры, так и переходом активного центра молекулы фермента в узком температурном интервале в другое конформационное состояние со сменой активационных параметров реакции. [c.250]

    Для определения энергии Гиббса при конформационном переходе ПМАК необходимо вычислить разность площадей, ограниченных кривыми зависимости р/( от а для структурированной и неструктурированной форм поликислоты. Величину АОконф рассчитывают по формуле (IV. 6). [c.132]


Смотреть страницы где упоминается термин Конформационная зависимость кон: [c.11]    [c.91]    [c.101]    [c.261]    [c.100]    [c.14]    [c.236]    [c.47]    [c.122]    [c.43]    [c.286]    [c.83]    [c.232]    [c.119]    [c.132]   
Введение в курс спектроскопии ЯМР (1984) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Гликозиды, зависимость образования от конформационных факторов

Иммуноанализ на основе конформационных ограничений, создаваемых для фермент-зависимой метки антителами. Т. Т. Нго, Материалы и методы

Конформационная зависимость кон вицинальной

Конформационная зависимость кон геминальной

Конформационная зависимость кон гомоаллильной

Конформационные

Фишера реакция зависимость от конформационных факторов



© 2025 chem21.info Реклама на сайте