Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соединения азота, химические свойства

    Главная подгруппа V группы периодической системы химических элементов Д. И. Менделеева включает пять элементов азот N, фосфор Р, мышьяк Аа, сурьму 8Ь и висмут В1. Каждый из этих элементов на внешнем слое имеет 5 электронов (конфигурация С увеличением атомного номера свойства простых веществ, образованных атомами элементов этой подгруппы, закономерно изменяются увеличивается плотность, усиливается окраска, уменьшается электроотрицательность. Азот и фосфор — типичные неметаллы, висмут имеет больше металлических свойств. Мышьяк и сурьма занимают промежуточное положение. Многие их соединения обладают полупроводниковыми свойствами. Физические свойства элементов приведены в таблице 26, свойства простых веществ в таблице 27. [c.118]


    Сравнить физические и химические свойства водородных соединений элементов подгруппы азота, указав как изменяются а) температуры кипения и плавления б) термическая устойчивость в) окислительно-восстановительные свойства г) кислотно-основные свойства. Назвать причины, вызывающие эти изменения, [c.232]

    Химическая активность резко понижается от ванадия к ниобию, затем к танталу (по физическим и химическим свойства тантал обнаруживает сходство с платиной). Все три металла при высоких температурах взаимодействуют с кислородом, галогенами, серой, азотом и другими металлоидами, в том числе поглощают водород с образованием соединений, по составу близких к формуле МН. [c.520]

    Химические свойства. Свойства аминов определяются аминогруппой, азот которой содержит неподеленную пару электронов. Поэтому амины, подобно аммиаку, проявляют основные свойства. Так, в водных растворах амины, присоединяя протон, образуют аммонийные соединения  [c.204]

    Современная химия достигла такого уровня развития, что существует целый ряд ее специальных разделов, являющихся самостоятельными науками. В зависимости от атомарной природы изучаемого вещества, типов химических связей между атомами различают неорганическую, органическую и элементоорганическую химии. Объектом неорганической химии являются все химические элементы и их соединения, другие вещества на их основе. Органическая химия изучает свойства обширного класса соединений, образованных посредством химических связей углерода с углеродом и другими органогенными элементами водородом, азотом, кислородом, серой, хлором, бромом и йодом. Элементоорганическая химия находится на стыке неорганической и органической химии. Эта третья химия относится к соединениям, включающим химические связи углерода с остальными элементами периодической системы, не являющимися органогенами. Молекулярная структура, степень агрегации (объединения) атомов в составе молекул и крупных молекул — макромолекул привносят свои характерные особенности в химическую форму движения материи. Поэтому существуют химия высокомолекулярных соединений, кристаллохимия, геохимия, биохимия и другие науки. Они изучают крупные объединения атомов и гигантские полимерные образования различной природы. Везде центральным вопросом для химии является вопрос о химических свойствах. Предметом изучения являются также физические, физико-химические и биохимические свойства веществ. Поэтому не только интенсивно разрабатываются собственные методы, но и привлекаются к изучению веществ другие науки. Так важными составными частями химии являются физическая химия и химическая физика, исследующие химические объекты, процессы и сопровождающие их явления с помощью расчетного аппарата физики и физических экспериментальных методов. Сегодня эти науки объединяют целый ряд других квантовая химия, химическая термодинамика (термохимия), химическая кинетика, электрохимия, фотохимия, химия высоких энергий, компьютерная химия и др. Только перечень фундаментальных наук химического направления уже говорит об исключительном разнообразии проявления химической формы движения материи и влиянии ее на пашу повседневную [c.14]


    При прямом взаимодействии азота и фосфора со многими металлами и неметаллами образуются нитриды и фосфиды. В зависимости от полярности связи Е—X можно наблюдать переходы от связей ионного типа к ковалентным или к металлическому типу связи (X=N, Р). При этом происходят переходы между тремя основными типами соединений меняются также химические свойства соединений. [c.533]

    Химические свойства. Сера — типичный неметалл, ло своей электроотрицательности она уступает только галогенам, кислороду и азоту и поэтому окисляется ими. В своих соединениях она проявляет степени окисления —2, -(-4, +6 и редко +2. [c.242]

    Хинолинолы и изохинолинолы, содержащие кислородный заместитель в любых положениях, за исключениям положений 2 и 4 в хинолине и 1 и 3 в изохинолине, аналогичны фенолу, т. е. содержат гидроксильную группу. Для них так же, как и для аналогичных производных пиридина, характерно равновесие с цвитте-рионной структурой с протонированным атомом азота и депротонированным атомом кислорода. Для всех таких соединений характерны химические свойства нафтолов [54]. 8-Оксихинолин долгое время использовался в химическом анализе как хелатирующий агент особенно для катионов цинка(П), магния(П) и алюминия(Ш), а хелатный комплекс 8-оксихинолина с катионом меди(П) находит применение в качестве фунгицида. [c.175]

    Нейтральные смолы — полужидкие, а иногда почти твердые, вещества темно-красного цвета, плотностью около единицы. Они растворяются в петролейном эфире, бензоле, хлороформе и четыреххлористом углероде. В отличие от асфальтенов нейтральные смолы образуют истинные растворы. Кроме углерода и водорода в состав смол входят сера, кислород и иногда азот. Углеводороды находятся в смолах в виде ароматических и нафтеновых циклов со значительным количеством (40—50 вес. %) боковых парафиновых цепей. Весовое соотношение углерод водород составляет примерно 8 1. Сера и кислород входят в состав гетероциклических соединений. Смолы химически не стабильны. Под воздействием адсорбентов в присутствии кислорода частично происходит окислительная конденсация их в асфальтены. Физические свойства смол зависят от того, из каких фракций нефти они выделены. Смолы из более тяжелых фракций имеют большие плотность, молекулярный вес, красящую способность и содержат больше серы, кислорода и азота. Достаточно добавить в бензин 0,005 вес. % тяжелой смолы, чтобы придать ему соломенно-желтую окраску. [c.32]

    С водородом азот и фосфор образуют летучие соединения с общей формулой ЭНд NH3 — аммиак и РНд — фосфин, значительно отличающиеся по химическим свойствам. Молекулы NH3 полярны, так как электроотрицательность азота равна 3, а водорода — 2,1. Общие электронные пары смещены к атомам азота и окислительное число азота в аммиаке равно —3. Молекулы РН3 неполярны, так как электроотрицательности фосфора и водорода одинаковы и равны 2,1. [c.214]

    Гетероциклические соединения по химическим свойствам в большей или меньшей степени сходны с соединениями бензольного ряда. Молекулы гетероциклов могут содержать сопряженные системы двойных связей с неподеленными парами электронов гетероатомов цикла (азотом, серой или кислородом), что придает им ароматический характер. Например, для пятичленных гетероциклов характерны реакции замещения, а не присоединения. Некоторые из гетероциклов окисляются при действии перманганата щелочного металла. [c.233]

    Дзот — наиболее часто встречающийся в органических соединениях гетероэлемент. Химические свойства азотсодержащих соединений весьма разнообразны. Они обладают кислотными, основными, а также восстановительными и окислительными свойствами. Эти характерные свойства зависят от стенени окисления атома азота, от природы молекулы (ароматическая или алифатическая) и от природы и числа других заместителей в молекуле. Гетероциклические азотсодержащие соединения обладают специфическими свойствами. [c.191]

    Химические свойства. Кислородные соединения фосфора более устойчивые, чем азота, а водородное соединение менее прочное по сравнению с аммиаком. Если NH3 можно получить непосредственным синтезом из азота и водорода, то РН3 получают косвенно. Химическая активность фосфора значительно выше, чем азота. [c.208]

    Они являются неметаллами, образуют соединения, подобные по их химическим свойствам. Наиболее ярко неметаллический характер выражен у азота и фосфора мышьяк, сурьма и, особенно, висмут, наряду с неметаллическими свойствами, проявляют и металлические. Электроотрицательность их падает от азота к висмуту. [c.508]

    Нитридами называют соединения азота, карбидами— соединения углерода с менее электроотрицательными, чем азот и углерод, элементами. По структуре и свойствам нитриды и карбиды одного и того же элемента часто бывают подобными друг другу. Объясняется это тем, что углерод и азот, расположенные, в одном (втором) периоде периодической системы, мало отличаются размерами атомов и значениями электроотрицательностей. Нитриды и карбиды классифицируют по периодической системе и природе химической связи на следующие группы  [c.243]


    Химические свойства. Так как у кальция на внешнем энергетическом уровне содержатся 2 электрона, то его степень окисления во всех соединениях всегда равна +2. На воздухе кальций окисляется, поэтому его хранят в закрытых сосудах, обычно в керосине. При обычных условиях кальций реагирует с галогенами, а с серой, азотом и с углеродом — при нагревании  [c.175]

    В обоих этих случаях (Ы02)-группа присоединена к центральному атому Со через азот, т. е. мы здесь имеем не нитрито-, а нитросоединение. Это доказывается также и окраской полученных кристаллов комплексов (кристаллы оранжево-желтые и желтовато-коричневые, а не розово-красные), а также химическими свойствами комплексных соединений. [c.378]

    ГАФНИЙ (Hafnium, от древнего названия Копенгагена) Hf — химический элемент IV группы 6-го периода периодической системы элементов Д. И. Менделеева, п. н. 72, ат. м. 178,49 природный Г. состоит из шести изотопов. Положение Г. в периодической системе предсказал Д. И. Менделеев задолго до его открытия. Основываясь на выводах Н, Бора о строении атома 72-го элемента, Д. Костер и Г. Хевеши обнаружили этот элемент в минералах циркония и назвали его. Г.— рассеянный элемент, не имеет собственных минералов, в природе сопутствует цирконию (I — 7%). Г.— серебристо-белый металл, т. нл. 2222 30 С чистый Г. очень пластичен и ковок, легко поддается холодной и горячей обработке. По своим химическим свойствам очень близок к цирконию, потому их трудно разделить. В соединениях Г. четырехвалентен. Металлический Г. легко поглощает газы. На воздухе Г. покрывается тонкой пленкой оксида HfOj. При нагревании реагирует с галогенами, а при высоких температурах — с азотом и углеродом, [c.65]

    Большой теоретический и практический интерес представляют соединения, в которых роль лиганда играют молекулы азота N3. К подобным соединениям, называемым нитрогенильныма, относится, например, [Ри(ЫНз)в(Ы2)]С12- Образование связи М—N2 в нитрогенилах также обязано а-донорно-акцепторному и я-дативному взаимодействию. В этом проявляется общность химических свойств молекул N2 и СО. Поскольку молекула — худший донор, чем молекула СО, в координации молекулы N2 особо важна роль я-дативного взаимодействия. Оно усиливается при одновременной координации к комплексообразователю а-донорных лигандов, например H3N. [c.463]

    Синильная кислота H N. При высокой температуре, например в электрической дуге, углерод может непосредственно соединяться с азотом, образуя бесцветный ядовитый газ дициан, молекулярная масса которого соответствует формуле 2N2. По своим химическим свойствам дициан имеет некоторое сходство с галогенами. Подобно им, он образует соединение с водородом H N, обладающее кислотными свойствами и получившее название циановодорода, или синильной кислоты. [c.414]

    Происхождение чилийской селитры до сих пор не получило общепризнанного объяснения. Зная химические свойства азота и его соединений и круговорот азота в природе, попытайтесь сформулировать свои предположения по этому вопросу. [c.61]

    Так как в смолистоасфальтовых соединениях концентрируется главная часть всех гетероэлементов, а плотность нефти тоже в большой степени связана с ее смолистостью, то наличие корреляций между содержанием азота и отмеченными выше физико-химическими свойствами нефтей становится не только понятным, но и необходимым. [c.123]

    Различные типы углей состоят из одинакового набора петрографических структур, называемых мацералами, содержащихся в различных соотношениях. Мацералы подразделяют на три основные группы витринит, лейптинит и фюзинит, которые состоят из различных микрокомпонентов. Различие компонентов по составу и строению отражается на химических свойствах углей и, как следствие, на реакционной способности их в процессах переработки. Состав и структура групп лейптинита, витринита и фюзинита приведены в табл. 3.2 [63]. Содержание серы и азота в углях обычно мало, и в основном они присутствуют в виде гетероатомных соединений сера встречается также в пиритной форме. [c.64]

    К термостойким каучукам относятся в первую очередь диметил-полисилоксановые каучуки (силастики) с температурой стеклования ниже 120° и эластичные до 200°. Они не стареют при нагревании и хранении. Их бензостойкость растет от введения полярных групп или атомов фтора. Вероятно, еще более стойки при высоких температурах (до 500°) различные неорганические эластомеры, получаемые на основе соединений азота, фосфора, бора и других элементов, но этот вопрос еще не разработан. Из чисто органических сополимеров наиболее термостабильными являются, вероятно, описанные выше лактопрены, сохраняющие основные физико-химические свойства неизменными после длительных выдерживаний в маслах при 170—200°. [c.634]

    Вторая часть пособия включает описание особенностей структуры, физических и химических свойств функциональных производных углеводородов различных классов, содержащих кислород, азот, серу, фосфор, к-ремний, металльг. Рассматртается характер строения и свойства гетероциклических соединений, включающих атомы кислорода, серы и азота. Особый класс представляют полифункциональные соединения, содержа1цие несколько различных функциональных гр тт. Приведены также принципиальные особенности строения, методов получения и свойств основных классов биохимических веществ - полисахаридов, полипептидов и белков. [c.13]

    Пример 3. Соединение нейтрального характера реагирует со щелочами при нагревании с образованием соли и летучего органического вещества. Качественные реакции на азот, серу и галогены отрицательные. В коротковолновой части (у > 2500 см ) ИК-спектра (рис. 1.13) имеются только полосы валентных колебаний водорода насыщенных радикалов (между 2800 и 3000 см ). Очень слабая широкая полоса при частоте 3500 см — вероятнее всего примесь воды (или спиртов), второй слабый максимум при 3450 см" — обертон очень сильной полосы при 1730 см" -. Следовательно, вещество не содержит никаких группировок ОН (а также ЫН и 5Н, но они исключаются уже данными качественных реакций), не содержит водорода при тройных связях С=С, двойных связях С=С и С=0 или ароматических кольцах. Отсутствие этих фрагментов подтверждается также исследованием области частот 1500—2500 см , в которой имеется лишь полоса 1730 см . Эта очень сильная полоса точно соответствует частоте валентных колебаний карбонила в нескольких классах органических веществ (см. таблицу характеристических частот в конце книги), но с учетом указанных химических свойств ее следует приписать сложноэфирной группировке (лактоны, имеющие те же частоты валентных колебаний С=0, не образуют летучих веществ при реакции со щелочами ангидриды карбоновых кислот имеюг в этой области две полосы и также не образуют летучих веществ при действии щелочей). Не исключена, однако, возможность одновременного присутствия кетонной группы (второго карбонила) и (или) группировки С—О—С простых эфиров. Таким образом, исследуемое вещество скорее всего является сложным эфиром какой-то кислоты предельного или [c.25]

    По данным элементного состава, остаточные нефти отличаются от нативных и отбензиненных более высокой молекулярной массой, значительным содержанием гетероатомных соединений, более высокой степенью водородной ненасыщенности. Содержание кислородорганических соединений в остаточной нефти на порядок выше, что указывает на ее высокую окисленность. Повышенное содержание элементов серы, азота, кислорода и золы указывает на значительное количество в остаточной нефти соединений сложной структуры и металлов [71]. Это хорошо согласуется с работами [71-73], где говорится, что при заводнении легкие компоненты нефти вымываются водой, при этом происходит увеличение плотности, вязкости нефти за счет процессов окисления и хроматографического эффекта на породе. А с ростом содержания смол, асфальте-нов и нафтеновых кислот увеличивается вероятность прилипания капель нефти к породе, что приводит к появлению аномалий вязкости [74]. В связи с вышеизложенным при разработке новых технологий повышения нефтеизвлечения важное значение приобретает знание химического состава и физико-химических свойств остаточных нефтей разрабатываемых месторождений. [c.59]

    Простейшим представителем диазосоединений алифатического ряда является диазометан СНгМа, для которого первоначально были предложены формулы (93) и (94). Хотя в формуле (93) не нарушены валентности входящих в это соединение элементов, от нее пришлось отказаться, поскольку химические свойства реального диазометана не отвечали свойствам такой структуры, обещающей относительную химическую инертность. Кроме того, диазометан имеет значительный дипольный момент (1,4 Д). Формула (94) с пятиковалентным атомом азота исключается потому, что не отвечает требованиям квантовой механики. [c.462]

    ПОЛОНИЙ (Polonium, назван в честь Польши — родины М. Склодовской-Кюри) Ро — радиоактивный химический элемент VI группы 6-го периода периодической системы элементов Д. И. Менделеева, п. Н.84, массовое число наиболее долгоживущего изотопа 209. Известны 24 изотопа и ядерных изомера. П. открыт в урановой руде в 1898 г. П. Кюри и М. Склодовской-Кюри. Природный изотоп 21оро (Т,д=138 дней) — а-излуча-тель. По химическим свойствам сходен с теллуром и висмутом. П.— металл серебристо-белого цвета, т. пл. 254° С. В соединениях П. четырехвалентен. Металлический П. легко растворяется в концентрированной HNO3 с выделением оксидов азота. С кислородом реагирует при нагревании, с водородом и азотом не реагирует. П. применяется для изготовления нейтронных источников, для изучения радиационно-химических процессов под действием а-излу-чения, действия а-излучения на живые организмы, для изготовления электродных сплавов и др. [c.200]

    НИТРИДЫ — соединения азота с эле ктроположительнымп элементами (глав ным образом, с металлами), Н. обладают высокой твердостью, термической устойчивостью, тепло-и электропроводностью, химической стойкостью против действия кислот и щелочей, огнеупорностью. Н, применяются в сплавах. Некоторые Н обладают высокими каталитическими свойствами. [c.175]

    Первое и. соединений, содержащих два атома азота, — азокси-бензол — образуется вследствие конденсации промежуточных продуктов нитрозобензола и фенилгидроксиламина. Нитрозогруппа полярна и по химическим свойствам близка к карбонильной группе ( )енилгидроксиламин — типичный нуклеофил, способный атаковать группу —N==0  [c.261]

    Для Сг (III) характерна преимущественная координация азот- н кислородсодержащих аддендов, с которыми он образует прочные ковалентные связи. Однако эти связи отличаются меньшей прочностью, чем в соединениях платиновых металлов. Следствием этого является возможность проявления оптической и геометрической изомерии. Вследствие значительной стереохи-мической определенности этих соединений и высокой степени ковалентности связи центральный ион — адденд возможно, что химические свойства этих соединений окажутся объясненными с позиций закономерности трансвлияния. Однако для окончательного суждения о справедливости этой закономерности в химии хрома требуется систематическое исследование соединений Сг (III), Примеры основных типов комплексов Сг (III) даны в табл, 64. В шестивалентном состоянии хром дает многочисленные изополисоединения, например КгСгзОю. [c.208]

    Второй период образует атомы от до Ne. В направлении — Ке растет эффективный заряд ядра, в связи с чем уменьшаются размеры атомов (см. Гшах), возрастает потенциал ионизации и осуществляется, начиная с В, переход к неметаллам. Потенциал ионизации отражает не только рост в ряду —Ке, но и особенности электронных конфигураций потенциал ионизации у бора ниже, чем у бериллия. Это указывает на упрочнение заполненных нодоболочек ( у бериллия). Более высокий потенциал ионизации азота по сравнению с кислородом указывает на повышенную прочность конфигурации р , в которой каждая орбиталь занята одним / -электроном. Аналогичные соотношения наблюдаются и в следующем периоде у соседей Mg—А1 и Р—5. У атомов второго периода отрыв электрона с внутреннего Ь -слоя требует такого высокого ПИ (75,62 эВ уже у лития), что в химических и оптических процес--сах участвуют только внешни электроны. Сродство к электрону в ряду Ы—Р имеет тенденцию к возрастанию. Но у берилжя оболочка заполнена, и сродство к электрону эндотермично так же, как и у гелия (1л ). Обладая самым высоким потенциалом ионизации ю всех неметаллов и высоким сродством к электрону, фтор является наиболее электроотрицательным элементом в периодической системе. Для атома неона СЭ (Ке)=—0,22 эВ. Оболочка з р атома Ке, электронный октет, характеризуется суммарным нулевым спином и нулевым орбитальным моментом (терм 5о). Все это, вместе с высоким потенциалом ионизации и отрицательным сродством к электрону, обусловливает инертность неона. Такая же з р конфигурация внешнего слоя характерна для вСех элементов нулевой группы. Исследования последних лет показывают, что 1 п, Хе,Кг и Аг дают химические соединения со фтором и кислородом. Очевидно, что з р конфигурация не влечет как непременное следствие химической инертности. Все атомы со спаренными электронами (терм о) — диамагниты (Не, Ве, Ке и т. д.). Конфигурации внешнего электронного слоя у атомов 2-го и 3-го периодов, стоящих в одних и тех же группах, одинаковы, чем объясняется близость химических свойств элементов, стоящих в одних и тех же группах (сравните Ка иЬ1 в табл. 5). Но наблюдается и различие элементы второго периода обладают постоянной валентностью, а третьего — переменной. Это связано с тем, что у атомов третьего периода есть вакантные -состояния в третьем квантовом слое, а во втором слое таких соединений нет. [c.62]

    Число электронов наружной оболочки и энергия связи их с ядром определяют химические свойства атомов. Так, три электрона лития неравноценны. Один из этих электронов связан с ядром атома слабее двух других, так как расположен дальше от ядра, чем первые два электрона. Этот электрон участвует в образовании химической связи поэтому называется валентным. Числом электронов наружной оболочки определяются валентные состояния, характерные для данного элемента, типы его соединений — гидридов, окислов, гидратов солей и т. д. Это можно проследить на любой группе элементов периодической системы. Известно, что в наружных оболочках атома азота, фосфора, мышьяка, сурьмы, висмута находится по пять электронов. Этим определяются их одинаковые, валентные состояния (—3, +3, +5), однотипность гидридов ЭНз,, окислов Э2О3 и ЭаОз и т. д. и, ггаконец, то, что все указанные эле-, менты находятся в одной группе периодической системы. [c.18]

    Азот и фосфор являются элементами УА группы периодической системы Д. И. Менделеева. На внешнем энергетическом уровне атомов этих элементов находится пять электронов из них три р-электрона. Поэтому в нормальном состоянии они проявляют валентность, равную трем. Наибольшее изменение в химических свойствах элементов УА группы наблюдается при переходе от азота к фосфору. В атомах азота внешним энергетическим уровнем является второй, содержащий только 5- и р-поду ровни, а подуровень с1 отсутствует. Атомы азота при переходе в возбужденное состояние могут увеличить число непарныхэлектронов максимум до четырех и при этомза счет потери одного электрона. В этом случае образуется электронная конфигурация а азот становится четырехвалентным, как в ионе [ЫН4] . Поэтому азот не проявляет валентности, равной пяти. В атомах фосфора наружным энергетическим уровнем является третий, состоящий из трех подуровней з, р и й. При возбуждении атомов фосфора увеличение числа непарных электронов происходит за счет использования -подуровня с образованием электронной конфигурации поэтому фосфор в отличие от азота может проявлять валентность, равную пяти. Размеры атомов азота и фосфора меньше, а энергия ионизации этих элементов соответственно больше, чем углерода и кремния. В связи с этим азот и фосфор при химических реакциях не теряют электронов и не превращаются в элементарные катионы. Сродство к электрону этих элементов незначительно и поэтому они, как правило, не превращаются и в элементарные анионы. Азот и фосфор образуют соединения как с кислородом, так и с водородом, только с ковалентными связями. Таким образом, азот и фосфор являются неметаллами. Причем свойства неметаллов у них выражены сильнее, чем у углерода и кремния. [c.213]

    Химические свойства. Железо является металлом со средней восстановительной активностью. При окислении его слабыми окислителями получаются производные двухвалентного железа сильные окислители переводят его в трехвалентное состояние. Эти два валентных состояния являются наиболее устойчивыми, хотя известны соединения железа с валентностью 1, 4 и 6. Являясь аналогом рутения и осмия (аналогия по подгруппе), железо имеет также много сходного с кобальтом и никелем (аналогия по периоду). При определенных условиях оно вступает в реакции почти со всеми неметаллами. При невысоких температурах (до 200° С) железо в атмосфере сухого воздуха покрывается тончайшей оксидной пленкой, предохраняющей металл от дальнейшего окисления. При высокой температуре оно сгорает в атмосфере кислорода с образованием Fe Oi. Во влажном воздухе и кислороде окисление идет с получением ржавчины 2Fe20a HgO. Галогены активно окисляют железо с образованием галидов FeHlgj или FeHlgg (иодид железа (III) не образуется). При нагревании железо соединяется с серой и селеном, образуя сульфиды и селениды. В реакциях с азотом и фосфором получаются нитриды и фосфиды в случае малых концентраций азота образуются твердые растворы внедрения. Нагревание с достаточным количеством [c.348]

    Полимеры, содержащие азот [13]. Белки. Химические свойства белков определяются природой амидной связи и функциональными группами (карбоксильной, гидроксильной, аминной, дисульфидной), входящими в состав радикалов К аминокислот. Под действием кислот, щелочей и ферментов белки гидролизуются, распадаясь на аминокислоты. Белки можно ацилировать и алкилировать. Широко используется в промышленности процесс дубления белков, в результате которого они теряют растворимость. Процесс дубления сводится к взаимодействию бифункциональных соединений, например формальдегида, с молеку- [c.259]


Смотреть страницы где упоминается термин Соединения азота, химические свойства: [c.82]    [c.463]    [c.29]    [c.144]    [c.556]    [c.98]    [c.535]   
Аналитическая химия азота _1977 (1977) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Азот, свойства

Практикум JIP-7 Химические свойства органических соединений азота и серы

Соединения азота и азота

Соединения азота, химические свойства азиды

Соединения азота, химические свойства азот молекулярный

Соединения азота, химические свойства азотистая кислота

Соединения азота, химические свойства азотистоводородная кпелота

Соединения азота, химические свойства азотная кислота

Соединения азота, химические свойства амиды

Соединения азота, химические свойства аммиак

Соединения азота, химические свойства аммоний

Соединения азота, химические свойства гидроксиламин

Соединения азота, химические свойства двуокись азота

Соединения азота, химические свойства дициан

Соединения азота, химические свойства закись азота

Соединения азота, химические свойства имиды

Соединения азота, химические свойства окись азота

Соединения азота, химические свойства пятиокись азота

Соединения азота, химические свойства роданид-ионы

Соединения азота, химические свойства трехокись азота

Соединения азота, химические свойства четырехокись азота

Химическое соединение



© 2025 chem21.info Реклама на сайте