Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пограничный толщина

    Для определения толщины пограничного слоя рекоменду- [c.154]

    Так как для частицы, омываемой потоком, = 0/6 (6 — толщина пограничного слоя у поверхности частицы), б < а и ), < О, то всегда У, = [c.140]

    Прандтля служит масштабным множителем, определяющим соотношение толщины гидродинамического и теплового пограничных слоев. Этот формальный результат отражает нетривиальный факт феноменологической термодинамики неравновесных процессов переноса — подобия процессов переноса субстанции, что хорошо видно из уравнения (4.0). [c.158]


    В неподвижной жидкости толщина пограничного слоя может быть определена из характеристического времени молекулярной диффузии  [c.155]

    Для молекулярно-конвективной диффузии толщина диффузионного пограничного слоя может определяться по уравнению [401]  [c.160]

    Уравнение (4.8) характеризует толщину теплового пограничного слоя при ламинарном обтекании границы раздела (Рг > 1). В случае Рг -> О или Рг < 1 рекомендуется оценивать по формуле  [c.158]

    Осуществление процессов переноса сопровождается сопротивлением, сосредоточенным в областях, примыкающих к поверхностям, через которые такой перенос осуществляется. Эти области принято называть пограничными. Толщина пограничных слоев (6) по масштабу сравнима с масштабами флуктуаций характеристик переносимой субстанции (6 Ь). В рамках феноменологической теории термодинамики перенос рассматривают как процесс рассасывания флуктуаций. Плотность сил сопротивления переносу в пограничных слоях тем выше, чем толще пограничный слой и чем медленнее развитие процесса в нем. В связи с этим необходимо понижать масштаб ГА воздействия по мере перехода от процессов макромасштабных к процессом с меньшими масштабами. Этим самым обоснован фундаментальный подход к синхронизации метрик элементарных процессов переноса и внешних воздействий на них. [c.33]

    Шлихтинг [447] приводит соотношение для толщины теплового пограничного слоя в этих условиях в виде соотношения  [c.159]

    В ходе переноса тепла, сопровождающегося парообразованием, экспериментально обнаружен тепловой пограничный слой, который меняет свою толщину симбатно с ростом размеров парогазового пузыря [166]. Найдено, что этот слой выталкивается растущим пузырем из-за испарения на границе раздела пузырь-сплошная среда и нестационарности переноса тепла за счет теплопроводности окружающей жидкости. Эти процессы приводят к увеличению толщины пограничного слоя вокруг пузыря. [c.158]

    П. Процесс теплоотдачи от шара в слое к газовому потоку — внешняя задача теплообмена. В отличие от обтекания одиночных тел в данном случае на формирование пограничного слоя влияют соседние шары. Они разбивают пространство вокруг шара на" отдельные зоны, дробят поток на струи, создают вихревые зоны в кормовых областях. Чем плотнее укладка шаров, тем больше число контактов каждого шара с соседними и тем сильнее выражено влияние последних, приводящие к уменьшению средней толщины пограничных слоев. Следовательно, порозность влияет не только на скорости газа в слое, но и на толщину пограничных слоев, образующихся на поверхности шаров. Поэтому эквивалентный диаметр для зернистого слоя э = 4е/а может служить геометрическим масштабом процесса теплоотдачи шаров в слое и характеризовать среднюю толщину пограничных слоев. В данном случае использования э при больших Кеэ не связано с рассмотрением течения газа в слое как внутренней задачи движения по ряду криволинейных каналов, а означает только, что определяющий размер для зернистого слоя не равен размеру его элементов, а зависит от геометрии свободных зон между ними. [c.151]


    При обтекании жидкостью границы раздела фаз на ее поверхности возникает пограничный (гидродинамический, вязкий, динамический, скоростной) слой, толщина которого зависит от режима течения жидкости и условий обтекания препятствия. [c.154]

    Если принять, что скорость жидкости на границе теплового пограничного слоя равна Шу, то его толщина определится как [237]  [c.157]

    Число Шервуда представляет собой меру интенсивности молекулярного и конвективного диффузионного переноса. При 5с << 1 можно пренебречь конвективной диффузией и толщина диффузионного пограничного слоя становится равной  [c.160]

    Необходимость учета направления теплового потока обусловлена различием температурных полей и толщин пограничного слоя при нагревании и охлаждении жидкости. Указанное обстоятельство можно учитывать также введением дополнительного параметра [c.64]

    Анализ этой формулы подсказывает основные пути интенсификации процессов переноса тепла. Во-первых, необходимо снижать толщину вязкого подслоя (толщину теплового пограничного слоя), во-вторых, увеличивать коэффициент теплоотдачи (изменять температуру). Эти пути будут успешными, если их механизм будет согласован с сайтом процесса. [c.159]

    При ламинарном течении шероховатость не оказывает влияния на сопротивление трения. При турбулентном течении шероховатость начинает проявляться, как только толшина граничного слоя приближается к высоте выступа б. Если значение б превышает толщину пограничного слоя, то коэффициент сопротивления зависит только от шероховатости стен и не зависит от критерия Ке. В этом случае  [c.171]

    В случае 5с > 1, когда влияние молекулярной диффузии мало, толщина пограничного слоя определяется формулой (4.9). [c.160]

    Причиной уменьшения величины коэффициента теплоотдачи вдоль лицевой поверхности трубки в направлении движения жидкости является незначительная теплопроводность воздуха. Все падение температуры происходит здесь в пограничном слое, толщина которого увеличивается. На задней поверхности трубки коэффициент теплоотдачи вновь повышается под действием вихревого течения. Если величина Ке является незначительной, то и коэффициент теплоотдачи является небольшим. При малых значениях Ке теплоотдача задней половины цилиндра меньше, чем передней. Так, при значениях критерия Рейнольдса приблизительно до Ке = 10 этой частью поверхности цилиндра передается ориентировочно до 30% тепла. При больших значениях Ке [c.75]

    Жидкость подается на поверхность теплообмена слоем минимальной толщины и постепенно стекает с этой поверхности. Задача заключается в том, чтобы получить пленку наименьшей толщины или турбулизировать пограничный слой, с тем чтобы коэффициент теплоотдачи был возможно большим. [c.99]

    Наиболее целесообразной формой сечения ребра по теоретическим соображениям (наименьшее количество материала при максимальной теплопроизводительности) является треугольная форма сечения. Расстояние между ребрами, для того чтобы они не мешали друг другу, должно быть не менее половины толщины пограничного слоя 6. Толщина пограничного слоя при естественной конвекции равна [c.200]

    V — коэффициент переноса импульса, ке/ м -ч) или кг/(м -сек) б — толщина пограничного слоя, м  [c.101]

    Из уравнений (УП1-181) и (УП1-182) находим г и г", а затем, суммируя их, получаем уравнение, определяющее толщину пограничной пленки  [c.253]

    Толщина гидродинамического пограничного слоя при обтекании сферического пузыря  [c.15]

    Интересно отметить, что численные расчеты уже при Ре> 10 дают хорошее соответствие для критерия Шервуда, определенного формулой (4.95), хотя при таких значениях Ре толщина диффузионного слоя на лобовой части сферы составляет величину порядка десятых радиуса частицы. По мере увеличения значений Ре область, в которой сосредоточен основной перепад концентраций, становится все более тонкой. Наблюдается процесс формирования диффузионного пограничного слоя (рис. 4.10). [c.196]

    Здесь 8, и 5, - толщины диффузионных пограничных слоев в первой и второй фазах. [c.266]

    Величину Ф , входящую в формулу (6.51), определим, полагая, что пр больших К2 толщина зоны реакции пренебрежимо мала и может быть заменена фронтом. Решение уравнений диффузионного пограничного слоя относительно реагирующих веществ при допущении, что фронт реакции совпадает с гидродинамической линией тока [405], приводит к значению Фо , совпадающему с результатами расчета по формуле (6-60). Для мгновенной химической реакции второго порядка эта формула будет иметь место при любых значениях Ре, поскольку в данном случае роль гидродинамического влияния, как обсуждалось выше, несущественна. [c.275]

    Турбулентный пограничный слой имеет более сложную структуру. Теория турбулентности показывает, что турбулентный пограничный слой состоит из двутс подслоев вязкого подслоя и собственно турбулентного слоя. Толщина турбулентного пограничного слоя определяется соотношением  [c.155]


    И решалась в предположении о линейно.м распределении скорости в вязком подслое, Таким образом, была использована физическая гипотеза о затухании невзаимодействующих вихрей в ламинарном плоско-параллельном, стационарном, безградиеитном теченш (эта гипотеза является, по-видимому, хорошим приближением к действительности непосредственно вблизи стенки). Проведенное теоретическое рассмотрение показало, что структура турбулентности в вязком подслое определяется крупномасштабными вихрями, сильно вытянутыми в продольном направлении. Эти вихри двигаются со скоростью, значительно превышающей локальные скорости в вязком подслое и составляющей примерно полов1шу скорости на внешнем крае пограничного слоя (или на оси, если рассматривается течение в трубе). Этому способствуют и напряжения Рейнольдса, которые затухают пропорционально третьей степени расстояния от стенки. Вычисления показали также, что поперечный интегральный масштаб вихрей в подслое соизмерим с толщиной вязкого подслоя, в то время как продольный интегральный масштаб турбулентности в подслое почти на два порядка больше. Этот факт указывает на важную роль трехмерности пульсационного движения в пределах вязкого подслоя. [c.180]

    Скорость переноса вещества н фазе обратно пропорциональна сопротивлению сред1.(, которое складывается из сопротивлений, оказываемых основной массой среды, буферным и пограничным слоями. Часто оказывается удобным условно рассматривать все явление массоотдачи как происходящее за счет только молекулярной диффузии в области постоянного градиента концептрации или, в случае газов, постоянного градиента парциального давления. В этом случае вводится фиктивная толщина ламинарного слоя бе, в котором сонротивление диффузии принимается равным сумме сопротивлений реального ламинарного слоя, буферного слоя и турбулентной зоны.  [c.71]

    Уменьшение сопротивлений мас-со- и теплопереносу, лимитирующих скорость превращения. В некоторых случаях (см. раздел VIII) скорости массо- или теплопереноса через границу раздела фаз определяют скорость превращения. Ламинарная пограничная пленка оказывает основное сопротивление этим процессам, поскольку перенос массы через нее осуществляется только диффузией, а перенос теплоты — теплопроводностью, т. е. относительно медленно. За этой пленкой перенос массы и теплоты происходит главным образом конвекцией. Чем больше толщина пограничной пленки, тем выше сопротивление. В связи с этим наименее выгоден ламинарный режим движения потоков в системе. При высокой турбулентности потоков толщина пограничной ламинарной пленки меньше и, следовательно, легче и более быстро осуществляется транспорт массы и теплоты в другую фазу. [c.414]

    Пусть рассматривается эквимолярный переход низкокипящего компонента из яшдкой в паровую среду и высококипящего — в обратном направлении. Число молей Са диффундирующего комнонента на единицу межфазовой поверхности в единицу времени найдется по (11.15) подстановкой фиктивной толщины бе пограничного слоя вместо реальной толщины X (рис. 11.2)  [c.72]

    При ламинарном обтекании границы раздела фаз характерные хронопространственные значения сайта гидромеханических процессов определятся толщина пограничного слоя по формуле (4,7), а характерное время [237] [c.155]

    Толщина теплового пограничного слоя в процессах, связанных с теплопереносом от теплоотдающей (теплопоглощаю-щсй) стенки (8х), отсчитывается от границы поверхности стенки, и в нем наблюдается быстрое изменение температуры от температуры стенки (Гст) до температуры в объеме жидкости (Гоб). [c.157]

    Сайт процессов переноса массы сосредоточен в диффузионном пограничном слое. Хронопространственная метрика сайта определяется толщиной этого слоя и временем контакта фаз. В зависимости от характера движения потока сплошной среды в зоне контакта фаз различают молекулярный, конвективный и турбулентный механизмы диффузии. [c.160]

    Естественная конвекция носит всегда явно выраженный ламинарный характер. Однако, если поверхность нагрева имеет большую высоту, то поток нагретой жидкости или газа по мере удаления от нижней грани перестает быть спокойным и может стать турбулентным в некоторых случаях он может даже отделиться от стенки. Поэтому коэффициент теплоотдачи а не является постоянным на всем протяжении вертикальной плиты или трубки (фиг. 17). На кижней границе величина коэффициента теплоотдачи велика, по мере подъема по стенке а постепенно уменьшается, так как увеличивается толщина лам1Инарно перемещающегося вдоль стенки потока жидкости. Если пограничный слой становится турбулентным, то указанный коэффициент вновь повышается. Теоретически выведенное для местного коэффициента теплоотдачи а уравнение, правильность которого была проверена измерениями температурного и скоростного полей у вертикальной стенки, содержит в данном случае, по.лшмо разности температур А/, значение высоты плиты или поверхности Я  [c.34]

    Массообмен. Перенос массы в направлении поверхности соприкосновения фаз может происходить в результате молекулярной диффузии и конвекции, вызва.нной гидростатическими силами, течением потока или использованием перемешивающих устройств. Отдельный случай представляет собой движение турбулентного потока, в котором можно различить две зоны ламинарную (слой около поверхности соприкосновения фаз — пограничный слой) и турбулентную (в глубине фазы — ядро потока). В ламинарном слое вещество переносится главным образом молекулярной диффузией, а в турбулентной зоне в основном вследствие завихрений и флуктуаций локальной скорости движения потока. Считая, что в турбулентной зоне концентрация практически выравнивается, перенос массы в такой системе можно представить как молекулярную диффузию через пограничный ламинарный слой с эффективной (приведенной) толщиной. Перенос вещества до границы раздела фаз называется массоотдачей. [c.244]

    Из сравнения этих зависимостей с выражениями (Vni-159) и (Vni-160) следует, что k = D bIz — коэффициент массоотдачи в единицах концентрации = Олв/С- Ггс) — коэффициент массоотдачи в единицах давления С, р — концентрация и парциальное давление компонента в ядре потока Си pi — концентрация и парциальное давление компонента у межфазной поверхности 2с — эффективная толщина пограничного слоя. [c.246]

    Мерой движущей силы в этом случае является разность концентраций в основной массе потока и на поверхности контакта фаз Сс —Со. Для данной системы, характеристической величиной которой служит коэффициент диффузии, по мере увеличения разности концентраций и уменьшения толщины ламинарной пограничной пленки 2 возрастает число молей вещества, продиффунди-ровавшего в единицу времени (йп/ёт) через поверхность Р. [c.351]


Смотреть страницы где упоминается термин Пограничный толщина: [c.311]    [c.311]    [c.127]    [c.128]    [c.85]    [c.158]    [c.164]    [c.170]    [c.74]    [c.98]    [c.99]    [c.247]   
Гидродинамика, теплообмен и массообмен (1966) -- [ c.155 ]




ПОИСК





Смотрите так же термины и статьи:

Толщина



© 2025 chem21.info Реклама на сайте