Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сфероидальная оболочка

    Частица А не может покинуть сфероидальную оболочку окружающих ее атомов по пространственным причинам. Другим примером соединений с топологической связью являются катенаны, образованные замкнутыми, например, углеводородными цепочками ОС) Клатраты, обсуждавшиеся в разд, 7.1.4, также относятся к соединениям с топологической связью. [c.408]

    Для конических и сфероидальных оболочек и сосудов, как известно, более точной теории нет. Хотя в химическом машиностроении сфероиды и конусы значительной толщины пе встречаются, однако следует отметить, что ряд соображений общего характера позволяет считать полученные выше выводы для цилиндра и сферы применимыми и в случае сфероидов и конусов. [c.252]


    Как мы уже видели в гл. 1 настоящего раздела, в сфероидальной оболочке с отношением полуосей а 6 > V 2, нагруженной внутренним давлением, в некоторой зоне, примыкающей к экватору, возникают сжимающие кольцевые усилия, могущие вызвать в оболочке складки вдоль экватора. Критическое внутреннее давление в этом случае дано следующей формулой  [c.187]

    Для конических и сфероидальных оболочек и сосудов, как известно, более точной теории нет. Хотя в химическом машиностроении сфероиды и конусы значительной толщины не встречаются, однако следует отметить, что ряд соображений общего характера позволяет считать полученные выше выводы для цилиндра и сферы применимыми и в случае сфероидов и конусов. Можно поэтому принять, что для инженерных расчетов сосуд допустимо рассматривать как тонкостенный до значений [c.190]

    Устойчивость сфероидальной и конической оболочек 187 [c.187]

    Что касается конических и сфероидальных оболочек и сосудов, то для них, как известно, более точной теории нет. Хотя в практике, по крайней мере, химического машиностроения сфероиды и конусы значительной толщины не встречаются, все 168 [c.158]

    Другой вид дефектов, который можно отнести к постепенным отказам, это появление тороидальных или сфероидальных нарушений формы оболочек. Эти дефекты имеют место на многих УЗК. Опасность их заключается в том, что местный прогиб увеличивается во времени (рис. 2.11), а методы оценки их критического состояния отсутств>тот. Распределение их по поверхности оболочки реактора носит случайный характер (рис. 2.12). Увеличение стрелы прогиба чревато образованием трещины в ее вершине, и [c.90]

    Стерические условия образования ассоциатов неионогенных ПАВ во многом зависят от размеров поперечного сечения гидрофильных групп [29]. Райх провел аналогию между состоянием молекул углеводорода в водном растворе и состоянием углеводородных радикалов молекул ПАВ в водных растворах. В водном растворе молекулы алифатического углеводорода сворачиваются таким образом, что сегменты длинной углеводородной цепи взаимодействуют между собой за счет вандерваальсовских сил. Такие клубки представляют собой сфероидальные образования, практически не включающие молекул воды. Аналогично должны вести себя в водном растворе длинные цепи углеводородных радикалов молекул ПАВ в результате гидрофильные группы молекул ПАВ оказываются размещенными во внешней зоне углеводородного клубка. По мере роста ассоциации углеводородных радикалов молекул ПАВ полярные группы создают внешнюю экранирующую оболочку мицеллы. При достаточно полном экранировании углеводородной части мицеллы полярными группами становится невозможным доступ к ядру новых углеводородных радикалов моле- [c.18]


    Если наибольший вклад в адсорбционное взаимодействие анионов ПАВ с поверхностью оксида алюминия обусловлен электростатическим притяжением полярной группы аниона к атому поверхности, несущему электростатический заряд, то можно ожидать, что трехмерный ассоциат, формирующийся на поверхности оксида алюминия при адсорбции ПАВ из мицеллярного раствора, должен быть ориентирован к поверхности раздела фаз полярными группами, образующими внешнюю оболочку мицеллы. Та часть адсорбированного ассоциата, которая граничит с водой, образована так же, как и в равновесном растворе, обращенными наружу полярными группами ионов ПАВ. Следовательно, адсорбированные ассоциаты ионов ПАВ должны иметь сфероидальную (или эллипсоидальную) форму, а фактор ассоциации ионов на поверхности раздела фаз — быть равным фактору ассоциации ПАВ в равновесном растворе. [c.92]

    Так как каплевидные резервуары в процессе эксплуатации подвергаются различным комбинациям нагрузок в зависимости от уровня нефтепродукта и давления в газовом пространстве, профиль равнопрочной безмоментной оболочки сфероидальных резервуаров рассчитывают по наибольшей нагрузке, когда резервуар залит до максимального уровня, а давление в газового пространстве равно давлению, на которое рассчитана дыхательная арматура. Для упрощения расчета принимают, что объем [c.104]

    Сфероидальная и коническая оболочки [c.155]

    Некоторые недостатки одночастичной модели, касающиеся предсказания спинов основных состояний ядер, уже иллюстрировались или упоминались выше ограниченность этой модели наиболее сильно сказывается при рассмотрении электрических квадрупольных моментов ядер . Даже для ядер с избытком или недостатком всего лишь одного нуклона по сравнению с замкнутой оболочкой, когда одночастичная модель работает наилучшим образом, экспериментальные значения квадрупольных моментов зачастую в несколько раз больше того, что может быть приписано нечетному нуклону. Такое увеличение статического квадрупольного момента связано с другим экспериментальным наблюдением — 2-переходы (электрические квадрупольные переходы) часто оказываются гораздо более быстрыми, чем это ожидается для переходов между одночастичными состояниями. Физически наличие квадрупольных моментов и увеличение скорости 2-переходов означает, что ядро обладает сфероидальным, а не сферическим распределением заряда. Оболочечная модель предполагает сферическое распределение нуклонов в замкнутых оболочках, а сфероидальные деформации приписываются только нуклонам, находящимся вне замкнутых оболочек. Очевидно, такое допущение несправедливо. [c.288]

    Устойчивость сфероидальной, торосферической и конической оболочек 247 [c.247]

    Коллективная модель. Предполагаемая для четно-четной сердцевины ядра с нечетным массовым числом сфероидальная деформация означает, что уже нельзя говорить о движении нечетного нуклона в сферически симметричном потенциальном поле и что поэтому орбитальный момент количества движения нуклона больше не сохраняется. Однако в силу сохранения полного момента системы можно сделать вывод, что моменты сфероидальной сердцевины и нечетного нуклона связаны. Если, далее, к ядру с нечетным А добавляется еще один нуклон, то соответствующее четно-четное ядро также может оказаться сфероидальным (если только оболочка не заполнена) и обладать состояниями по моменту количества движения, характеризующими не группы независимо движущихся, согласно оболочечной модели, нуклонов, а когерентное движение нуклонов в ядре как целом. Квантование такого когерентного движения нуклонов и составляет основу коллективной модели. [c.289]

    Простейший путь квантования этого движения, согласующийся к тому же с описанными в разделе Б свойствами ядерного вещества, состоит в рассмотрении четно-четной сердцевины как капли несжимаемой жидкости и квантовании классических уравнений гидродинамики, описывающих ее осцилляции. Однако уже само это упрощение приходится выполнять приближенным способом, как из-за сложности уравнений, так и вследствие того, что оболочечная модель должна быть в какой-то мере сохранена при анализе, чтобы обеспечить сфероидальные равновесные формы четно-четных ядер с частично заполненными оболочками. [c.289]

    Внутренние состояния. Замечательным достижением чистой одночастичной модели является ее способность предсказывать спины и четности основных состояний почти всех ядер с нечетной массой. В тех случаях, когда она терпит неудачу, например в случае Ка (см. стр. 287), модель может быть улучшена, если учесть сфероидальные деформации, которые расщепляют одночастичные состояния ядер в области между заполненными оболочками. Одночастичный уровень 1 5/2, например, расщепляется на три двукратно вырожденных состояния со спинами и четностями [c.295]

    Широко использовав при изложении теории тонких оболочек труды упомянутых выше советских ученых, автор настоящей книги в ряде вопросов, однако, пошел своим путем. Для изложения краевой задачи теории длинной конической оболочки с одним краем было использовано приближеннее решение [17].. 1ля короткой конической оболочки с двумя краями приводится строгое решение, так как известные автору приближенные решения для этой задачи С. А. Ривкина и А. И. Лурье кажется все же крайне трудоемким. Краевая задача для цилиндра приводится в новом и весьма элементарном изложении. Новым является приближенное решение краевой задачи для оболочек вращения в общем случае, которое было использовано таки<е для сфероидальной оболочки. [c.8]


    Перекрытие строго сферических 5-оболочек ведет к образованию ГЦК - Сфуктуры типа меди, а перекрытие слегка вытянутых или сплюснутых сфероидальных s-оболочек - плотных гексагональных сфуктур. Замещение атома в решетке растворителя, например Ni, с атомным радиусом 1,24A и электронной концентрацией 2эл/ат, большим атомом легирующего элемента, например Си (r=l,28A, 1э.л/ат), ведет к оттеснению атомов никеля от узла, занятого атомом меди, и созданию зоны сжатия. Согласно модели перекрывающихся 5-оболочек происходит совмещение максимумов элекфонной плотности 45-оболочки атома меди с максимумами 45 -оболочек атолюв никеля. Атом меди оказывается центром зоны сжатия, бысфо убывающей к периферийным атомам никеля на расстоянии 2-3 постоянных решетки. Локальный характер изменения длины и энергии межатомных связей вокруг растворенного атома объясняет реальные отклонения от правила Вегарда, постулирующего линейные изменения параметра (или атомного объема) при возрастании доли легирутощего элемента. [c.37]

    В предлагаемой модели [66, 67] рассматривается некоторая область, имеющая сферическую, сфероидальную, гантельную форму или форму капсулы. Предпочтение отдается последней. При этом предполагают, что два реагирующих иона со своими оболочками из молекул растворителя расположены на концах этой капсулы, а в центре капсулы находится некоторый мостик , составленный из молекулы воды, иона водорода, молекулы кислорода, электрона в промежуточном состоянии или из перекрывающихся электронных орбиталей. Область рассматриваемой капсулы содержит только ту компоненту смещанного растворителя, которая характеризуется наибольшей диэлектрической проницаемостью, поскольку именно она будет преимущественно сольватировать ионы-реагенты. Кроме того, предполагается, что внутри капсулы имеет место полное диэлектрическое насыщение. Так как рассматриваемая область содерн ит только компоненту растворителя с наибольшей диэлектрической проницаемостью в условиях полного диэлектрического насыщения и поскольку на скорость реакции влияет диэлектрическая проницаемость только этой области, отсюда следует, что скорость реакции не будет зависеть от состава растворителя и его макроскопических свойств, таких, как диэлектрическая про-нииаел10сть, показатель преломления, вязкость. Свббодная энергия перестройки будет отражать некоторую электронную перестройку участвующих в реакции частиц. [c.119]

    Некоторые решения разработаны автором и публикуются, насколько он может судить, впервые. Таковы решение краевой задачи для цилиндрической оболочки, полученное элементарным путем приближенное решение краевой задачи для оболочки вращения в общем случае, примененное затем к расчету сфероидального днища некоторые решения для определения температурных напряжений в цилиндрах решение для кольцевой пластинки, нагруженной пареболической нагрузкой решение для кольцевой пластинки с гиперболическим профилем расчет вращающихся цилиндров с горизонтальной осью, напол кеь.ккх жкдьсстью расчет кривых цилиндрических лопастей, и некоторые другие. [c.4]

    А. Бутлеров сообщает, что им повторен был опыт Карнелли над отношением льда к нагреванию под малым давлением лед медленно испарялся не тая, но температуру его возвысить не удалось. Опыты продолжаются. Из числа лиц, допускающих возможность действительного нагревания льда, Лодж попытался дать объяснение предполагаемой возможности такого факта, но Бутлеров думает, что соображения Лоджа едва ли верны они прилагаются собственно по отношению к сфероидальному состоянию при этом состоянии притекающее тепло ухолит на образование пара, и масса вещества не нагревается выше известной степени. Можно действительно думать, что лед, не плавясь, можцт, при достаточно высокой температуре, быть в сфероидальном состоянии при всяком давлении, т. е. жидкость не будет успевать образоваться,— лед не будет успевать нагреваться под своей поверхностью, но тогда как может нагреться (перегреться) масса льда Внутреннее плавление в этом случае наступило бы тем болео, что места довольно при таянии происходит уменьшение, а не увеличение объема. Температура ниже точки плавления должна сохраняться в массе, подобно тому, как жидкость в сфероидальном состоянии сохраняет температуру ниже точки кипения.— Что касается положительного результата калориметрических опытов Карнелли, то ие объясняются ли они пристающей к льду оболочкой пара высокой температуры, который в мгновение переноса в калориметр остается еще ненасыщенным и потому по отношению к льду — в сфероидальном состоянии [c.547]

    Вращательные состояния. По мере того как еще большее число нуклонов или дырок добавляется к замкнутым оболочкам, вызванное остаточными взаимодействиями смешивание конфигураций приводит к постоянным сфероидальным деформациям ядра, и возбужденные состояния теперь уже лучше рассматривать как вращательные. Такая же метаморфоза имеет место и в молекулярной спектроскопии поскольку молекула СО2 линейна, она имеет четыре колебательные степени свободы и две вращательные, у нелинейной молекулы Н2О — три колебательные степени свободы и три вращательные. Выпрямление молекулы, таким образом, переводит вращение в колебание. Пример вращательной полосы, базирующейся на основном внутреннем состоянии был приведен на рис. 54 эти энергетические уровни согласуются с уравнением (6). Другим показательным примером могут служить возбужденные состояния АР . Рис. 58, заимствованный из работы Бора и Моттельсона [14], показывает, что наблюдаемый спектр АР можно интерпретировать как систему вращательных состояний, опирающуюся на первые четыре внутренних состояния. Нужно напомнить, что формула (5) недействительна нри К = /2 в этом случае необходимо пользоваться гораздо более сложным выражением, которое приводит даже к пересечению вращательных состояний. [c.297]


Смотреть страницы где упоминается термин Сфероидальная оболочка: [c.99]    [c.99]    [c.465]    [c.91]    [c.91]    [c.247]    [c.247]    [c.480]    [c.85]    [c.480]   
Смотреть главы в:

Основы расчета химических машин и аппаратов -> Сфероидальная оболочка

Основы расчета химических машин и аппаратов Издание 2 -> Сфероидальная оболочка




ПОИСК





Смотрите так же термины и статьи:

Оболочка

Сфероидальная и коническая оболочки

Устойчивость сфероидальной и конической оболочек



© 2025 chem21.info Реклама на сайте