Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связнодисперсные системы ( дисперсные структуры

    Дисперсные системы могут быть свободнодисперсными (рис. 88) и связнодисперсными (рис. 89, а—в) в зависимости от отсутствия или наличия взаимодействия между частицами дисперсной фазы. К свободнодисперсным системам относятся аэрозоли, лиозоли, разбавленные суспензии и эмульсии. Они текучи. В этих системах частицы дисперсной фазы не имеют контактов, участвуют в беспорядочном тепловом движении, свободно перемещаются под действием силы тяжести. Связнодисперсные системы— твердообразны они возникают при контакте частиц дисперсной фазы, приводящем к образованию структуры в виде каркаса или сетки. Такая структура ограничивает текучесть дисперсной системы и придает ей способность сохранять форму. Подобные структурированные коллоидные системы называют гелями. Переход золя в гель, происходящий в результате понижения [c.309]


    Дисперсные системы могут быть свободнодисперсными (рис. 10.2) и связнодисперсными (рис. 10.3, а—в) в зависимости от отсутствия или наличия взаимодействия между частицами дисперсной фазы. К свободнодисперсным системам относятся аэрозоли, лиозоли, разбавленные суспензии и эмульсии. Они текучи. В этих системах частицы дисперсной фазы не имеют контактов, участвуют в беспорядочном тепловом движении, свободно перемещаются под действием силы тяжести. Связнодисперсные системы — твердообразны они возникают при контакте частиц дисперсной фазы, приводящем к образованию структуры в виде [c.292]

    Кроме классификации коллоидов по размерам частиц (или по удельной поверхности) существуют классификации по агрегатному состоянию (табл.1), структуре (свободно или связнодисперсные системы), межфазному взаимодействию дисперсной фазы и дисперсионной среды (лиофильные и лиофобные коллоиды). Особое место занимают растворы высокомолекулярных соединений (полимеров), которые являются по существу термодинамически устойчивыми истинными растворами. Однако размеры молекул полимеров значительно превышают размеры обычных молекул (в том числе и растворителя), поэтому данным растворам свойственны многие свойства обычных классических коллоидных систем. В настоящей работе из-за ограниченного объема рассматриваются в основном только классические коллоиды. [c.41]

    Все коллоидные и микрогетерогенные дисперсные системы, как мы уже указывали в гл. I, можно разделить на свободнодисперсные и связнодисперсные системы. Если дисперсионной средой является жидкость, то могут быть и переходные системы, отдельные частицы которых связаны друг с другом в рыхлые агрегаты, но не образуют сплошной структуры (структурированные жидкости). Очевидно, подобные агрегаты можно рассматривать как обрывки пространственной сетки, которая по тем или иным причинам не получила полного развития. [c.313]

    Рассмотренные в предыдущих двух главах процессы нарушения агрегативной устойчивости дисперсных систем приводят в одних случаях к их разделению на макрофазы, в других — к развитию в объеме системы пространственной сетки-структуры, т. е. к переходу свободнодисперсной системы в связнодисперсную, в которой силы сцепления в контактах между частицами достаточно велики, чтобы противостоять тепловому движению и внешним воздействиям. При этом наблюдается радикальное изменение свойств дисперсной системы она приобретает комплекс новых — структурно-механических (реологических) свойств, характеризующих сопротивление деформации и разделению на части, т. е. отвечающих ее способности служить материалом. Система приобретает механическую прочность — главное свойство всех твердых тел и материалов, определяющее их роль в природе и в технике. Закономерности структурообразования в дисперсных системах, механические свойства структурированных систем и получаемых на их основе разнообразных материалов, с особым вниманием к роли физико-химических явлений на границе раздела фаз, изучает обширный самостоятельный раздел коллоидной химии, названный физико-химической механикой. [c.306]


    В связнодисперсных системах, в которых частицы дисперсной фазы связаны в пространственную структуру, существование зарядов на поверхности частиц и диффузных слоев ионов вызывает ряд особенностей в электрических свойствах и фильтрационных характеристиках, т. е. в закономерностях массообменных процессов, связанных с диффузией компонентов через такие системы или просачиванием через них жидкой фазы. Наибольший интерес здесь представляют особенности проявления электроосмоса и обратного осмоса, закономерности ультрафильтрации, возникновение потенциалов и токов протекания и некоторые другие свойства, о которых речь пойдет дальше. [c.197]

    В связнодисперсных системах, в которых частицы дисперсной фазы соединены в единую пространственную структуру, так же, как и в пористых телах с открытой сквозной пористостью, существование двойных электрических слоев на границах раздела фаз приводит к ряду особенностей в протекании процессов переноса вещества и электрического тока. Ограничимся рассмотрением процессов переноса на простейшем примере индивидуального капилляра н лишь качественно опишем те особенности, которые обусловлены сложной структурой порового пространства в реальной связнодисперсной системе. [c.241]

    С другом, находятся на достаточно большом расстоянии одна от другой и могут свободно перемещаться в дисперсионной среде. Дисперсные системы, в которых частицы связаны друг с другом межмолекуляр-ными силами и вследствие этого неспособны к взаимному перемещению, относятся к связнодисперсным системам. Частицы дисперсной фазы в таких системах образуют пространственную сетку (структуру), в ячейках которой находится дисперсионная среда. [c.208]

    Анализ многообразных свойств структур в дисперсных системах позволил П. А. Ребиндеру разделить их на два основных класса, различающихся по видам взаимодействия частиц дисперсной фазы. Исходя из того, что коагуляция соответствует первичному п вторичному минимуму потенциальной кривой взаимодействия частиц, он предложил различать конденсационно-кристаллизационные и коагуляционные структуры. Конденсациоиио-кри-сталлизацпонное структурообразование, отвечающее коагуляции в первичной потенциальной яме, происходит путем непосредственного химического взаимодействия между частицами и их срастания с образованием жесткой объемной структуры. Если частицы аморфные, то структуры, образующиеся в дисперсных системах, принято называть конденсационными, если часпщы кристаллические, то структуры являются кристаллизационными. При непосредственном срастании частиц механические свойства структур соответствуют свойствам самих частиц. Конденсационно-кристаллизаци-онные структуры типичны для связнодисперсных систем, т. е. систем с твердой дисперсионной средой. Такие структуры придают телам прочность, хрупкость и не восстанавливаются после разрушения. [c.365]

    В связнодисперсных системах частицы дисперсной фазы связаны друг с другом за счет межмолекулярных сил, образуя в дисперсионной среде своеобразные пространственные сетки или каркасы (структуры). Частицы, образующие структуру, не способны к взаимному перемещению и могут совершать только колебательные движения. [c.10]

    Концентрированные суспензии — пасты представляют собой связнодисперсные системы, в которых частицы дисперсной фазы взаимодействуют, образуя пространственные структуры. Для этих систем определяющими являются структурно-механические свойства, которые характеризуются такими параметрами, как вязкость, упругость, пластичность и др. Для паст характерны невысокая механическая прочность, тиксотропия, синерезис, набухание. [c.239]

    На различных стадиях наполнения нефтяной дисперсной системы сложными структурными единицами могут формироваться золи (свободнодисперсные системы), студни и гели (связнодисперсные системы). В зависимости от типа образовавшейся НДС различна и ее прочность. НДС обладают способностью сопротивляться расслоению под влиянием гравитации, т. е. обладают устойчивостью. Внещние силы их деформируют, а внутренние силы упругости (силы сцепления) стремятся сохранить ее форму, обусловливая их прочность. Структура ССЕ определяет также механические свойства НДС - вязкость, упругость, пластичность, - и потому эти свойства часто называют структурно-механическими свойствами. [c.168]

    Структурообразование в дисперсных системах. Физико-химическая механика твердых тел и дисперсных структур. Как указывалось в 105, дисперсные системы разделяют на две большие группы свободнодисперсные, или неструктурированные, и связнодисперсные, или структурированные системы. Последние образуются в результате возникновения контактов между дисперсными частицами. Особенности этих контактов зависят от природы, величины, формы, концентрации дисперсных частиц, а также от их распределения по размерам и взаимодействия с дисперсионной средой. [c.325]


    В общем это справедливо для концентрированных дисперсных систем, находящихся в статических условиях, и тем более для систем с преобладанием лиофобных межчастичных взаимодействий. Однако следует иметь в виду, что обычно при проведении гетерогенных химико-технологических процессов, т. е. в динамических условиях, структура в концентрированных дисперсных системах разрушается, а при достижении предельного разрушения применение к системе понятия связнодисперсные вообще теряет смысл. [c.175]

    ДФ на основе реализации рассмотренных выше факторов ее до достижения высоких степеней самонаполнения системы, а при исчерпании этих факторов - использование внешних энергетических воздействий, позволяющих поддерживать ДФ в разрушенном, распределенном по всему объему состоянии вплоть до установления степени наполнения системы, при которой она становится кинетически устойчивой из-за образования прочных коагуляционных контактов (после снятия внешних энергетических воздействий). Коагуляционная структура может формироваться также путем постепенного осаждения ДФ по мере образования ее в объеме свободнодисперсной части системы вплоть до полного израсходования вещества последней или до некоторого заданного уровня накопления слоя коагулянта, после чего свободно дисперсная система отделяется. В этом случае агрегативная и кинетическая устойчивость ДФ может быть достаточно низкой, а их уровень должен определяться требованиями к составу, свойствам и размерам ее частиц. На практике часто реализуются промежуточные между этими двумя крайними случаями варианты формирования коагуляционных структур (например, коксование в кубах и необогреваемых камерах) и, как правило, условия их формирования в рассматриваемом аспекте полностью определяются качеством загрузки реактора, температурой, давлением и гидродинамикой, определяемой объемной скоростью подачи сырья и интенсивностью его физико-химических и химических превращений. К сожалению, при этом технологические и гидродинамические условия оказываются "стандартизованными" особенностями действующей установки, но не оптимальными с точки зрения формирования связнодисперсной системы с заданной структурой и свойствами, т.е. КМ оказывается в этом аспекте лишь частично управляемой. [c.110]

    В свободнодисперсных системах частицы дисперсной фазы не связаны мелсду собой и способны независимо перемещаться в дисперсионной среде. Такие бесструктурные системы проявляют способность к вязкому течению и качественно ведут себя как чистая дисперсионная среда (жидкость или газ). Сюда относятся разбавленные эмульсии и суспензии, коллоидные растворы (золи). В связнодисперсных системах частицы дисперсной фазы образуют непрерывные пространственные сетки (структуры) они теряют способность к поступательному движению, сохраняя лишь способность к колебательному движению. К ним относятся гели, студни, концентрированные суспензии (пасты) и эмульсии, а также пены и порошки. Такие системы проявляют некоторые свойства твердых тел — способны сохранять форму при небольших нагрузках, обладают прочностью, часто упруги. Однако вследствие малой прочности связей между отдельными элементами сетки такие системы легко разрушаются — обратимо (приобретая способность течь) и необратимо (проявляя хрупкость). Существует также ряд переходных систем, получивших название структурированные жидкости . В структурированных жидкостях частицы дисперсной фазы склонны к сильному взаимодействию, но концентрация их недостаточна для создания единой пространственной сетки. Эти системы способны течь, имеют малый модуль упрз гости, но течение их не подчиняется законам течения идеальных жидкостей, а период релаксации велик и приближается к значениям, характерным для твердых тел- [c.429]

    При переходе от индивидуального капилляра к реальной связнодисперсной системе (мембрана или диафрагма) возникают усложнения, связанные со структурой порового пространства, в котором происходит перенос вещества и электрического тока. Вместе с тем все ранее описанные основные закономерности остаются справе,гщивыми и в этом случае, только радиус капилляра и его длина заменяются некот(5рыми (размерными) коэффициентами, называемыми структурными факторами . Определение этих стр ,тстурных факторов достаточно сложно, но можно ожидать, что при описании электроосмотического переноса и электрической проводимости связно дисперсных систем эти факторы одинаковы, подобно тому как в выражениях (VII. 24) и (VII. 25) одинаковым образом входят величины г и /. Это позволяет определить электрокинетический потенциал связнодисперсной системы с неизвестной структурой. Определив цри некотором значении разности потенциалов электроосмотический поток и ток через исследуемую систему (введя дополнительное количество электролита для выполнения условия А к Яо), электрокинетический потенциал рассчитывают из выражения [c.243]

    В связнодисперсных системах частицы связаны друг с другом за счет межмолекулярных сил, образуя в дисперсионной среде своеобразные пространственные сетки или каркасы (структуры). Частицы, образующие структуру, очевидно, не способны к взаимному перемещению и могут совершать лишь колебательные движения. К таким системам относятся гели, концентрированные суспензии (пасты) и концентрированные эмульсии и пены, а также порошки. Гели могут образоваться как в результате коагуляции коллоидных систем и объединения в одно целое выпавшего осадка (коагели), так и вследствие молекулярного сцепления в отдельных местах частиц золя, образующих сравнительно рыхлые сетки или каркасы (лиогели). В последнем случае в гелях сохраняется внешняя однородность системы. Естественно, образованию геля всегда способствует повышение концентрации дисперсной фазы в системе. Переход золя в состояние геля называется гелеобразо-ёанием. [c.28]

    Структурообразование в дисперсных системах. Физико-химическая механика твердых тел и дисперсных структур. Как указывалось в 105, дисперсные срютемы разделяют на две большие группы свободнодисперсные, илн неструктурированные, и связнодисперсные, или структурированные системы. Последние образуются в результате возникновения контактов между дисперсными частицами. Особенности зтих контактов зависят от природы, вели- [c.337]

    При увеличении числа частиц коллоидов образуется каркас из дисперсной фазы, пространство между которым заполнено дисперсионной средой. Образование структуры обусловлено контактами между частицами. Такие структуры могут быть упорядоченными и неупорядоченными. Они относятся к связнодисперсным и обладают прочностью. Подобно твердому телу, они противодействуют внешним деформирующим силам. Высокомолекулярные соединения -белки и полисахариды - образуют связнодисперсные системы. Это студни, сохраняющие свою форму под действием внешней нагрузки и стабилизирующие погруженные в них дисперсные частицы, как бактериальные клетки. Те парагистологические структуры микробных сообществ, которые были рассмотрены выше, отражают жизнь микроорганизмов в коллоидной среде со всеми присущими ей элек-трокинетическими явлениями. Поверхностный заряд живой клетки играет при этом первостепенную роль. [c.65]

    До сих пор шла речь, в основном, вообще о структурно-механических (реологических) свойствах свободнодисперсных и связнодисперсных систем, обладающих коагуляционной и конденсационно-кристаллизационной структурой. Вместе с тем эти системы объедиияют большинство различных природных и синтетических материалов, используемых в народном хозяйстве. Поэтому знание общих закономерностей образования систем с определенными структурно-механич ескими свойствами помогает находить методы управления такими свойствами конкретных материалов. К важнейшим материалам относятся металлы, сплавы, керамика, бетоны, пластмассы и др. Как уже указывалось, их реологические свойства описываются типичной для твердообразных систем зависимостью деформации от напряжения (см. рис. VII. 15). Несмотря на небольшую пористость или даже ее отсутствие, все эти материалы полученные в обычных условиях, являются дисперсными система ми. Их структуру составляют мельчайшие частицы (зерна, кри сталлики), хаотически сросшиеся между собой. Технология пере численных материалов, как правило, предусматривает предвари тельный перевод исходного сырья в жидкообразное состояние которое позволяет различными методами регулировать структур но-механические и другие свойства продукта. Технологам, занимающимся получением материалов, очень важно знать механизм образования тех или иных структур, а также методы регулирования их свойств, в частности механических. [c.382]

    К первому типу систем относятся текучие системы аэрозоли, лиозоли, разбавленные эмульсии и суспензии. Концентрированные суспензии и эмульсии, порошки — примеры связнодисперсных систем. Такие системы образуются благодаря наличию контакта частиц дисперсной фазы, что приводит к образованию каркасной структуры, ограничнваюшей текучесть системы. Коллоидные системы с внутренним структурированием называют гелями, а переход золя в гель (образование структуры в дисперсионной среде) называют гелеобразованием, или желатинированием. [c.100]


Смотреть страницы где упоминается термин Связнодисперсные системы ( дисперсные структуры: [c.309]    [c.309]    [c.292]    [c.11]    [c.418]    [c.306]   
Смотреть главы в:

Закономерности развития сложных систем в процессах карбонизации остаточных продуктов нефтехимпереработки -> Связнодисперсные системы ( дисперсные структуры




ПОИСК





Смотрите так же термины и статьи:

Дисперсные системы

Дисперсные системы связнодисперсные

Связнодисперсная

Система связнодисперсная



© 2025 chem21.info Реклама на сайте