Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение бора в природных водах

    При отборе проб природных вод (в том числе лизиметрических, оросительных и т. д.) необходимо тщательно выбрать и подготовить посуду, поскольку емкость, с одной стороны, не должна быть источником загрязнения образца, с другой стороны - не должна служить причиной утраты пробой отдельных компонентов вследствие процессов их химического взаимодействия с материалом посуды. Следует помнить, что бутылочные сорта стекол, особенно окрашенные, содержат примеси тяжелых металлов. Поэтому в качестве сосудов для отбора проб природных вод на анализ микрокомпонентов следует использовать бутыли из бесцветного стекла или полиэтилена без наполнителя. Необходимо иметь в виду, что резиновые пробки могут загрязнять образец цинком, свинцом, сурьмой. Для определения бора пробы воды следует отбирать в полиэтиленовую посуду. Емкости для отбора воды на анализ ртути должны быть стеклянными. [c.44]


    Метод пригоден для определения бора в морской воде и других природных водах, для анализа сточных вод и т. п. [c.326]

    Работа 15.5. Определение бора в природных водах [c.159]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]


    Метод фотометрического определения кальция с мурексидом применен при анализах солей щелочных металлов [128, 252, 336. 1052, 1613], биологических материалов [430, 979, 1015, 1197, 1229,1397, 1503], пищевых продуктов [1488], почв и растений [354], природных вод 1772], железа и стали [554, 805], кокса и огнеупорных глин [267, 1057], бора высокой чистоты [1208], двуокиси титана [49], циркониевых и титановых порошков [1298]. [c.86]

    При проведении статических опытов к одинаковым навескам сорбента (0,2 — 3 г) добавляли определенный объем (20—200 мл) борсодержащего раствора или природной воды. Навеску приводили в равновесие с раствором путем механического встряхивания и выдерживали до постоянного значения pH и концентрации бора в растворе. В равновесном растворе определяли концентрацию бора, вытесненного из анионита иона хлора, а также pH. Поглощенное количество бора (Гц или определяли по разности между количеством его в исходном и равновесном растворах и пересчитывали на 1 г воздушно-сухого сорбента. [c.314]

    В природных водах бор в большинстве случаев определяют без отделения. После выпаривания воды досуха с небольшим количеством раствора гидроокиси кальция в остатке непосредственно получают окрашенное соединение. Золу растительных веществ обычно обрабатывают соляной или серной кислотой и аликвотную часть раствора используют для непосредственного определения бора без отделения. [c.414]

    С другой стороны, фотометрические методы определения бора настолько специфичны и точны, что их можно использовать для. определения борной кислоты не только в очень малых ее концентрациях, но и в относительно больших после соответствующего разбавления пробы. Определению бора всеми методами мешает присутствие фторидных ионов. (Совместное присутствие боратов и фторидов наблюдается в некоторых природных водах, особенна в минеральных.) В таких случаях можно рекомендовать добавление в пробу фторида натрия или калия и определение образующихся фторборатных ионов Вр4 в виде ионных ассоциатов этих ионов с бриллиантовой зеленой, метиленовой синей или другим подобным красителем , -  [c.172]

    Определение бора в природных водах методом спектрофотометрии [c.569]

    Разработаны методы ионообменного определения бора в природных водах его концентрирования [115]. Способ состоит в следующем заполняют колонку высотой 20 см и диаметром 16 мм ионообменной смолой КУ-2, КУ-1 или СВС-1 в количестве 10 г, заливают дистиллированной водой и оставляют на 24 ч для набухания смолы 50 мл анализируемой воды пропускают со скоростью [c.28]

    Сильное загрязнение поверхности Земли происходит в результате образования свалок бытовых и промышленных отходов. Они занимают огромные территории, в результате процессов гниения и испарения загрязняется воздух, осадки вымывают из них вредные вещества и продукты коррозии в подземные воды и природные водоемы. Особенно большую опасность для окружающей среды представляют свалки вредных химических и металлургических отходов. Например, такая свалка в 40 км от Санкт-Петербурга под названием Красный Бор стала в последние годы бомбой замедленного действия для жителей города и области. Каждую весну во время паводка ее обваловывают высокой глинистой стеной, но это не дает никаких гарантий от возможной утечки ядовитых отходов и от их попадания в Неву и водопроводную систему города. У жителей близлежащих деревень наблюдается повышенная заболеваемость легочными и желудочными заболеваниями. Комплексная переработка существующих свалок помимо улучшения экологической обстановки может принести определенный экономический эффект за счет получения товарной продукции й виде солей цветных металлов, стройматериалов и энергии за счет сжигания органических отходов. [c.64]

    Автоматический специфический чувствительный 0,001 метод для определения всех форм бора в природных и сточных водах (производительность 16 проб в час) [17] [c.40]

    ИСО 11885 устанавливает метод определения растворенных и нерастворенных элементов, а также их общего количества в питьевой воде и в природных и сточных водах атомно-эмиссионной спектроскопией. Данным методом можно определять алюминий, барий, бериллий, бор, ванадий, висмут, вольфрам, железо, кадмий, калий, кальций, кобальт, кремний, литий, магний, марганец, медь, молибден, мышьяк, натрий, никель, олово, свинец, селен, серебро, серу, стронций, сурьму, титан, фосфор, хром, цинк, цирконий. [c.334]

    Для определения качества питьевых, природных и сточных вод требуется проведение большого числа разнотипных анализов — хи-, мических, физико-химических, санитарно-бактериологических. На- -бор столь разнохарактерных определений обусловлен сложностью состава примесей воды и большим разнообразием целей, для которых выполняется анализ. Основными задачами, решаемыми на основе анализов, являются  [c.72]

    Фотометрические методы определения мышьяка в виде мышья-ковомолибдеповой сини находят широкое применение. Они используются для определения мышьяка в его соединениях [529], железе, чугуне и стали [48, 540, 666, 698, 773, 785, 790, 885, 917, 943, 949, 952, 996, 1131-1133, 1147], ферросплавах [217, 702, 703, 1203], меди и медных сплавах [158, 195, 197, 216, 515, 562, 815, 886, 952, 1043, 1133, 1209, 1210], рудах и продуктах медного и свинцово-цинкового производства [21, 81], железных рудах [652, 822, 949, 1108], свинце [158, 264, 627, 695, 886, 926, 952, 990, 1133], серебре и его сплавах [1070], Вольфраме и его рудах [1203], олове [307, 585, 661, 1208], сурьме [91, 197, 198, 264, 284, 837, 886, 894, 952, 956], висмуте [265, 764], цинке [158, 627, 926, 952], ниобии и ванадии [284], галлии [284, 2881, индии [284, 289, 430], таллии [284, 287], кремпии [284, 872], германии ]б99, 700, 872], селене [637, 1016, ИЗО], теллуре [758], хроме и его окислах [198, 216], алюминии [144], кадмии [158], олове [886], молибдене и его окислах [459], никеле [402, 562], боре [893], уране [661, 760, 849, 928], минералах [415, 869, 994], пиритах и пиритных огарках [302, 491], фосфорной [940, 941], азотной [892], серной [939] и соляной [197, 452] кислотах, природных водах [785, 942, 993], дистиллированной воде [452], фосфатах [942] и фосфорсодержащих продуктах [980, 1091], силикатах и силикатных породах [869, 942, 964, [c.61]


    Ионообменный метод с последующим алкалиметрическим титрованием применялся для определения бора в никелевых и цинковых электролитах для гальванонокрытий [1, 25, 63, 124, 137], в железе и стали [9, 94, 152, 196], в титановых сплавах [150], силикатах [108], природных водах [185] и дезодорантах [32], а также в три-бромиде бора и его продуктах присоединения [189]. Я. А. Дегтя-ренко [41 ] применил этот метод в несколько измененном виде для анализа фтороборатов. В этом анализе вытекающий раствор кипятят с хлоридом кальция, чтобы разложить фтороборную кислоту, затем осаждают фторид кальция и определяют борную кислоту титрованием. Недавно были разработаны методики определения бора [c.257]

    Бурксер Е. С. и Бурксер В. В. Определение малых количеств бора в солях и природных водах. Бюлл. Всес. н.-и. ин-та минерального сырья. (М-лы научно-методические и производ. лабор. геол. управлений. Ком-т по делам геологии при СНК СССР), 1943, № 10, с. 13—16. Библ. 1 назв. Машинопись. 3227 Бурксео Е. С. и Федорова Н. К. Опыт нсследования химического состава атмосферных вод. [Методика химического анализа воды]. Гидрохимические материалы (АН СССР. Гидрохим. ин-т), 1949, 16, с. 107—112. Библ. 5 назв. 3228 Бурксер Е. С., Федорова Н. Е. и Зайдис Б. Б. [c.134]

    Декстрановый гель. При спектрофотометрическом определении бора и ванадия в природных водах и горных породах указанные микроэлементы сорбируют на колонке, заполненной декстрановым гелем Сефа-декс 0-25, и затем элюируют 0,02 и 0,12 М раствором хлороводородной кислоты [608]. [c.98]

    Один из основоположников сов. радиохимии и радиевой пром-сти. Руководил (1918—1921) совм. с И. Я. Башиловым созданием первого в России радиевого з-да, на котором были получены (1921) первые препараты радия из отечественного сырья. Разрабатывал технологию пром. получения радия и редких элем. Установил (1924) закон распределения микроком-понентов между кристаллами и насыщенным р-ром (закон Хлопина). Предложил метод определения состава нестойких хим. соед. путем изучения условий сокристаллиза-ции. Изучал условия миграции радиоактивных элем, в земной коре и разработал (1947) метод определения абсолютного возраста пород. Предложил объемный метод определения ванадия, что позволило быстро и с достаточной точностью следить за содержанием этого элем, в промежуточных продуктах радиевого произ-ва. Под его руководством разработана технология пром. получения плутония из урана. Открыл и исследовал радийсодержащие воды. Изучал распространенность гелия и аргона в природных газах, бора — в природных водах. Дал каноническую формулировку (1950) закона разделения радиоактивных в-в посредством изоморфной кристаллизации. Создал школу сов. радиохимиков. Герой Социалистического Труда [c.476]

    МИНЕРАЛЬНЬГЕ воды, природные, обычно подземные, воды, характеризующиеся повыш. содержанием биологически активных минер, или орг. компонентов и обладающие определенными хим. составом и физ.-хим. св-вами (т-ра, радиоактивность и др.), благодаря к-рьпк они оказывают лечебное действие. В широком смысле к М. в. относят также прир. воды, из к-рых извлекают галогены, бор и др. в-ва, и термальные воды, используемые в энергетич. целях. [c.89]

    В настоящее время ионоселективные электроды все шире внедряют в чисто практические определения. Сюда относятся, например, определения Са + в природной и промышленной водах, пищевых и биологических материалах, различных Породах, промышленных продуктах и др. F- в, воде, биологических образцах, специальных синтетических материалах N0 при агрохимических анализах и. контроле загрязнения внешней среды вследствие употребления искусственных удобрений- бора (в виде BFi) в агрохимии анионов (таких, как С1 , Вг", I-, N", -S , SOt", РОГ, S N, lOi и др.) катионов (Mg2+, Ag+, d , РЬ2+, u + и др.) и т. д. [c.344]

    Радон является короткоживущим членом трех природных радиоактивных семейств и присутствует в атмосфере, почве и в воде в чрезвычайно малых концентрациях. Например, в одной из ранних работ Эшмана [А20], посвященной определению количества радона в воздухе путем конденсации его при температуре жидкого воздуха, было показано, что в 1 воздуха содержится при нормальных условиях примерно 7 10 г радона. Это количество радона эквивалентно количеству, находящемуся в радиоактивном равновесии с 10 ° г радия. Сухие препараты радия и даже растворы соединений радия удерживают большую часть выделяющегося в них радона (обсуждение эманационных методов см. в гл. IX). Для экстракции радона из сухих и мокрых препаратов радия и для его очистки было использовано много остроумно сконструированных при--боров. (См., например [В12, У7, 18].) С одним граммом радия находится в радиоактивном равновесии около 0,6 -л радона (при нормальных условиях). [c.167]

    Природные поверхностные воды (как и подземные воды зоны активного водообмена) но своему составу, как правило, вполне пригодны непосредственно для питьевых целей. Улучшение органолептических свойств легко достигается на водопроводных станциях процессами коагуляции, фильтрации и окисления, вследствие чего для незагрязненных природных водоисточников объем аналитического контроля мог бы ограничиваться определением мутности (прозрачности) и цветности воды. Требования к качеству воды со стороны промышленных водопользователей зависят от особенностей технологического использования воды, которые и определяют минимально необходимый аналитический контроль исходной воды. Наиболее типично определение состава и качества воды [3]. В водо определяют жесткость, кислотность, мутность, pH, цветность, ш елочность, удельную электропроводность, масла, а также содержание бора, фтора, железа, кальция, натрия, магния, марганца, никеля, меди, свинца, цинка, хрома(VI), орто- и полифосфатов, нитрат-, нитрит-, сульфат-, сульфид-, сульфит-, хлорид-ионов, кремневой кислоты, аммиака, углекислого газа, растворенного кислорода, гидразина, тапнина, лигнина кроме того, определяют вес сухого остатка — до и после фильтрования. [c.8]


Смотреть страницы где упоминается термин Определение бора в природных водах: [c.543]    [c.659]    [c.368]    [c.659]    [c.56]    [c.56]    [c.114]   
Смотреть главы в:

Практикум по аналитической химии -> Определение бора в природных водах




ПОИСК







© 2025 chem21.info Реклама на сайте