Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение в инфракрасной области спектра

    В настоящее время нет надежных методов определения тиофе-нов в присутствии других сернистых соединений. Наиболее перспективными являются, очевидно, методы полярографии, а также оптические методы (анализ в инфракрасной области спектра и др.). [c.34]

    КОЛОРИМЕТРИЧЕСКОЕ И СПЕКТРОФОТОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ЭЛЕМЕНТОВ В ВИДИМОЙ (И БЛИЖНЕЙ ИНФРАКРАСНОЙ ОБЛАСТИ СПЕКТРА [c.443]


    В. ОПРЕДЕЛЕНИЕ СУММАРНОГО КОЛИЧЕСТВА АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ В БЕНЗИНАХ ПО ПОГЛОЩЕНИЮ В БЛИЖНЕЙ ИНФРАКРАСНОЙ ОБЛАСТИ СПЕКТРА [c.559]

    Как видно из приведенной таблицы, расхождение данных при определении суммарного количества ароматических углеводородов в бензинах, полученных химическим методом и методом поглощения в ближайшей инфракрасной области спектра, составляет 1,()%. [c.561]

    B. Определение суммарного количества ароматических углеводородов в бен зинах по поглощению в ближней инфракрасной области спектра [c.881]

    Тепловое излучение, как и любой другой вид электромагнитного излучения, занимает определенную четко выраженную область в единой шкале спектра электромагнитных колебаний. Передача тепла излучением может происходить как в видимой, так и в инфракрасной областях спектра. Видимая область спектра простирается от 0,40 до 0,76 мк, а инфракрасная - от 0,76 до 1000 мк. [c.10]

    Основным источником теплового излучения несветящегося пламени, развивающегося в различных топочных и печных устройствах, являются трехатомные газы СОт и Н2О. Эти газы всегда содержатся в продуктах сгорания любого топлива и при отсутствии твердых взвешенных частиц полностью определяют эмиссионные свойства факела. В отличие от двухатомных газов, которые практически прозрачны для теплового излучения, трехатомные газы обладают более высокой поглощательной способностью в инфракрасной области спектра. Как и все другие газы, трехатомные газы СО2 и Н2О обладают полосатым спектром излучения. Они поглощают и излучают энергию лишь в определенных узких участках инфракрасного спектра. В большей же части спектра эти газы являются прозрачными для теплового излучения. [c.15]

    Визуальное наблюдение (уравнивание освещенности участков поля зрения окуляра) дает точность определения 1%. Применение фотоэлектроколориметров повышает точность определения до 0,1%. Эти приборы не очень дорогие, поэтому их широко применяют в последнее время. Достоинствами фотоэлектроколориметров являются возможность их использования для серийных анализов (при визуальных наблюдениях быстро наступает усталость глаз), пригодность для автоматизации и непрерывного контроля производства. Применение фотоэлементов в приборах дает возможность работать в ультрафиолетовой и инфракрасной областях спектра. [c.363]


    Привести примеры количественных определений по поглощению в инфракрасной области спектра в а) неорганической химии б) органической химии. [c.138]

    У сложных молекул число колебательных степеней свободы велико (см. 6.1), и их инфракрасные спектры представляют собой систему большого числа различных, частично налагающихся друг на друга по ос поглощения. Существенно, однако, что для многих химических связей или групп частоты колебаний мало зависят от того, в составе каких молекул они находятся. Поэтому в ИК-спектрах соединений, содержащих такую группу или связь, всегда наблюдается полоса с максимумом в определенной узкой области спектра. Например, в спектрах всех соединений, содержащих группу SH, можно наблюдать полосу с максимумом поглощения около 2575 см Ч Все соединения, содержащие карбонильную группу С = О, поглощают в области 1650—1850 см причем для каждого класса соединений, содержащих С = 0-группу, можно выделить свой более узкий диапазон волновых чисел, отвечающих максимуму поглощения, Например, для альдегидов, имеющих группу — СН = О, характерна полоса с максимумом вблизи 1720 см , для карбоновых кислот, имеющих группу —С(ОН) = 0, — полоса с максимумом вблизи 1750 см . [c.156]

    Неводные растворители, например циклогексан, сероуглерод и другие, должны быть оптически чистыми, т. е. не содержать никаких примесей, которые могут поглощать лучи тон области спектра, в которой проводят спектрофотометрическое определение. Растворители, применяемые для спектрофотометрических измерений в инфракрасной области спектра, не должны содержать воды, потому что вода разрушает кюветы из каменной соли или сильвина. [c.259]

    Определение в инфракрасной области спектра [c.264]

    В то же время антисимметричные валентные и деформационные колебания приводят к появлению дипольного момента молекулы. Им соответствуют интенсивные полосы в спектре поглощения. По той же причине валентные колебания двух одинаковых атомов в симметричных молекулах не проявляются в спектрах поглощения, например колебания С=С в этилене. Но при наличии разных заместителей у таких атомов на связи появляется дипольный момент, и она становится активной в спектре поглощения. Таким образом, соседние атомные группы оказывают влияние как на частоту, так и на интенсивность полос поглощения. В результате каждая молекула имеет свой вполне определенный спектр поглощения в инфракрасной области спектра. Практически невозможно найти два вещества, имеющих точно одинаковый спектр поглощения. [c.293]

    Спектрофотометрический метод анализа основан на качественном и количественном изучении светопоглощения различных веществ в инфракрасной области спектра (невидимые электромагнитные колебания с длиной волны от 500 ООО до 760 нм), видимой (от 760 до 400 нм) и ультрафиолетовой (от 400 до 1 нм). Задача спектрофотометрического анализа — определение концентрации вещества измерением оптической плотности на определенном участке видимого или невидимого спектра в растворе исследуемого вещества. Например, при определении хрома измеряют оптическую плотность желтого раствора хромата, поглощающего свет в сине-фиолетовой части видимого спектра. [c.453]

    Появление кристаллов парафина наблюдали с помощью микроскопа в специальной камере со смотровыми стеклами, позволяющей проводить определения при давлении до 50 МПа и температуре до 100° С. Этот метод позволил также определить линейные размеры выпадающих кристаллов, которые составили от 5 до ЗО мкм и оказались соизмеримыми с размерами пор продуктивных коллекторов. Фотометрические измерения проводили как в видимой, так и в инфракрасной областях спектра. При термографических измерениях использовали сосуды высокого давления, рассчитанные для работы до 30 МПа и температуре до 150°С термограммы регистрировали на приборе ФРУ-64. Температуру насыщения определяли ультразвуковым методом, измеряя поглощение ультразвуковых волн (частота колебаний 1 и 3 МГц). Ультразвуковая камера позволяла вести измерения при давлении до 60 МПа и температуре до 150° С. [c.29]

    Спектрофотометрия основана на поглощении монохроматического света, т. е. света определенной длины волны (1—2 нм) в видимой, ультрафиолетовой и инфракрасной областях спектра. [c.48]

    В недавно опубликованных работах приведены сравнительные данные определения инфракрасного абсорбционного спектра пиперидина и анабазина в области 3700—2700 и 1800—1550 см в жидкой пленке (0,025 мм) в хлороформенном растворе и определения ультрафиолетового спектра анабазина в различных растворах. Полученные данные показаны на рис. 2 и 3. [c.32]

    В спектрофотометрических методах применяют сложные приборы - спектрофотометры, позволяющие проводить анализ как окрашенных, так и бесцветных соединений с помощью избирательного поглощения монохроматического света в видимой, ультрафиолетовой или ближней инфракрасной областях спектра. Поскольку спектр поглощения каждого вещества имеет вполне определенную форму, спектрофотометр может быть применен как для качественного, так и для количественного анализа. [c.184]


    А. Проводят определение, как описано в разделе Спектрофотометрия в инфракрасной области спектра (т. 1, с. 45). Инфракрасный спектр соответствует спектру сравнения амодиахина гидрохлорида. [c.37]

    А. Проводят определение, как описано в разделе Спектрофотометрия в инфракрасной области спектра (т. 1, с. 45). Для безводной формы инфракрасный спектр соответствует спектру, полученному со стандартным образцом ампициллина СО, или спектру сравнения ампициллина. [c.39]

    А. Проводят определение, как описано в разделе Спектрофотометрия в инфракрасной области спектра (т. 1, с. 45). Инфра- [c.50]

    А. Проводят определение как описано в разделе Спектрофотометрия в инфракрасной области спектра (т. 1, с. 45). Для безводной формы инфракрасный спектр соответствует спектру, полученному со стандартным образцом дексаметазона ацетата СО, или спектру сравнения дексаметазона ацетата. Для моногидрата инфракрасный спектр соответствует спектру, полученному со стандартным образцом дексаметазона ацетата моногидрата СО, или спектру сравнения дексаметазона ацетата моногидрата, [c.98]

    Данные, опубликованные Чарлетом и др., а также Лиллардом и др., убедительно свидетельствуют о том, что по крайней мере у ароматических углеводородов в высококипящих нефтяных продуктах преобладают конденсированные структуры. В настоящее время нельзя сделать определенных выводов о структуре имеющихся в нефти высокомолекулярных циклопарафиновых углеводородов. Предположение о конденсированной структуре полициклических циклопарафиновых углеводородов нефти, принятое многими авторами, представляется вероятным, но не окончательным. Поглощение в инфракрасной области спектра при 10,4 //, часто наблюдав-3  [c.35]

    Возмо/кпость определения ароматических углеводородов но поглощению их в блпжайпюй инфракрасной области спектра была проверена па бензинах, получаемых в некоторых процессах нефтепереработки. Эти бензины отличаются друг от друга различным суммарным содержанием ароматических углеводородов, ио соотношение между отдельными ароматическими компонентами мало лнтяется. Так, содержание бензола, толуола и ксилолов колеблется около соотношения 15 60 25%. Поэтому в данном случае можно воспользоваться методом суммарного определения ароматических углеводородов, основанном на измерении поглощения в ближайшей инфракрасной области. [c.560]

    Спектрофотометрия, как и фотометрия, относится к абсорбционному анализу, основанному на поглощении света определяемым веществом в видимой, ультрафиолетовой и инфракрасной областях спектра. Она также основана на законе Бугера, т. е. на принципе существования пропорциональной зависимости между светопогло-щением и концентрацией поглощающего вещества. Однако в спек-трофотометрии анализ осуществляется по светопоглощению монохроматического света, т. е. света определенной длины волны. [c.140]

    Уменьшение интенсивности света в результате его поглощения растворами обычно выражают величиной оптической плотности, которую измеряют на фотоэлектроколориметрах, сиектрофометрах и других приборах (см. гл. 15). Спектрофотометры позволяют также получить спектры поглощения исследуемых растворов в видимой, ультрафиолетовой и инфракрасной областях спектра и установить, какие участки спектра поглощаются наиболее сильно, т. е. где расположены максимумы поглощения. Для многих растворов спектры поглощения являются очень специфичной качественной характеристикой, так как указывают на наличие и природу определенных атомных группировок. [c.391]

    Абсорбционная спектроскопия основана на изучении спектров поглощения вещества, являющихся его индивидуальной характеристикой. Различают споктрофотометрический метод, основанный на определении спектра поглощения или измерении светопоглощения (как в ультрафиолетовой, так и в видимой и инфракрасной областях спектра) при строго определенной длине волны (монохроматическое излучение), которая соответствует максимуму кривой поглощения данного исследуемого вещества, а также фотоколориметрический метод, основаиньи на определении спектра поглощения или измерении светопоглощения в видимом участке спектра. [c.28]

    Отклонения, вызываемые не строго монохроматическим излучением. Закон Бугера — Ламберта — Бера точно справедлив только для монохроматического излучения. В спектрофотометрических измерениях применяют монохроматоры, т. е. спектральные аппараты, которые снабжены выходной щелью, вырезающей из спектра узкий участок. Но монохроматор может дать строго монохроматическое излучение только в том случае, если он снабжен бесконечно узкой щелью. В действительности реальные аппараты снабжены щелью какой-то определенной ширины, что вызывает некоторое отклонение от закона Бугера — Ламберта—Бера. Особое значение немонохроматичность излучения приобретает при измерениях в инфракрасной области спектра. [c.246]

    Фотоэлементы с внутренним фотоэффектом основаны на уменьшении сопротивления при облучении светом определенной длины волны. Они изготовляются из специальных полупроводниковых материалов, например из сплава талофид (сульфид таллия с окисью таллия или сульфидом свинца). Эти фотоэлементы чувствительны в инфракрасной области спектра. [c.466]

    Иарли изучалась возможность определения азота в нефтяных коксах (сырых и прокаленных) с использованием эмиссионной спектроскопии. В литературе описаны методы определения азота в металлах и сплавах с применением различных режимов искрового источника возбуждения. Применение иск-РОЕОГО источника для получения атомного спектра азота при анализе нефтяных коксов не привело к положительным результатам. Исследование различных линий в видимой и инфракрасной области спектра при различных способах введения образца в разряд, создание контролируемой аргоновой атмосферы позволили получить нижний предел обнаружения азота около 0,3%, что совершенно недостаточно для прокаленных коксов. [c.134]

    Спектрофотометрические измерения в инфракрасной области спектра используются в основном как испытания на подлинность. Инфракрасный спектр уникален для каждого данного химического соединения, за исключением оптических изомеров, имеющих идентичные спектры в растворе. Однако иногда разница в характере инфракрасного спектра данного вещества в твердом состоянии может быть обусловлена полиморфизмом и рядом других факторов, таких, как различия в размере кристаллов и их ориентации, методика растирания и возможное образование гидратов. Присутствие в небольших количествах примесей (до нескольких процентов) в испытуемом веществе обычно незначительно влияет на характер спектра. Для определения подлинности спектр можно срав- [c.45]

    A. Проводят определение, как описано в разделе Спектрофотометрия в инфракрасной области спектра (т. 1, с. 45). Инфракрасный спектр соответствует спектру, полученному со стандартным образцом бетаметазона СО, или спектру сравнения етаметазона (для получения одинаковой кристаллической формы может потребоваться перекристаллизация из хлороформа испытуемого вещества и стандартного образца). [c.58]


Смотреть страницы где упоминается термин Определение в инфракрасной области спектра: [c.254]    [c.295]    [c.76]   
Смотреть главы в:

Основы аналитической химии -> Определение в инфракрасной области спектра

Основы аналитической химии Кн 3 Издание 2 -> Определение в инфракрасной области спектра




ПОИСК





Смотрите так же термины и статьи:

область спектра



© 2025 chem21.info Реклама на сайте