Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектр поглощения ультрафиолетовый, определение

    Методы, основанные на взаимодействии излучения с веществом. Большое значение имеют различные оптические методы анализа. Измерение поглощения света является основой фотометрии. Различают две группы фотометрических методов колориметрию и спектрофотометрию. В колориметрии сравнивают окраску исследуемого раствора с окраской стандартного раствора. В спектрофотометрии определяют спектр поглощения вещества (раствора) или измеряют светопоглощение при строго определенной длине волны. Как чисто физический метод, фотометрия применяется для анализа растворов красителей, для определения окрашенных окислов азота в газах и т. п. Измерение поглощения в ультрафиолетовой и в инфракрасной частях спектра позволило распространить эти методы на многие бесцветные растворы, не поглощающие света в видимой области. Таким путем анализируют сложные системы, содержащие органические вещества, например различные фракции перегонки нефти, витамины и др. физиологически активные вещества. Измерение поглощения в инфракрасной области используется, кроме того, для определения мути в растворах, пыли в газах. [c.18]


    Для расшифровки состава природных органических соединений нефти и нефтепродуктов и характеристики их свойств применяются оптические методы. Сюда относятся инфракрасная и ультрафиолетовая спектрометрия, метод комбинационного рассеяния света, определения показателя преломления и оптической активности. Вещество, через которое проходит излучение, поглощает лучи только определенной длины волны (частоты), и по закону Кирхгофа само вещество излучает только те лучи, которые оно в данных условиях поглощает. Каждый ион, атом, молекула дают характерные частоты в спектре поглощения, спектре испускания и спектре комбинационного рассеяния. Задачей спектрального анализа является определение этих характеристических частот, зная которые, можно определить качественный состав углеводородной смеси. Для этого существуют таблицы характеристических частот индивидуальных углеводородов. Для количественного анализа еще необходима оценка интенсивности излучения. [c.228]

    СПЕКТРОФОТОМЕТРИЯ (абсорбционная) — физико-химический метод исследования растворов и твердых веществ, основанный на изучении спектров поглощения в ультрафиолетовой, видимой и инфракрасной части спектра. Методом С. изучают зависимость интенсивности (энергии) излучения, поглощения, отражения, рассеяния или иного преобразования света, излучаемого веществом или падающего на него, от длины волны. С. широко применяют для изучения строения и состава различных соединений (комплексов, красителей, аналитических реагентов и т. д.), для качественного и количественного определения веществ (открытия следов элементов в металлах и сплавах). Приборы, которыми пользуются в С., называют спектрофотометрами. [c.234]

    Область применения ультрафиолетовых спектров поглощения для идентификации углеводородов и качественного и количественного анализа их смесей ограничена в основном аренами (ароматическими углеводородами), поскольку лишь последние обладают достаточно характерными спектрами. В этом смысле возможности ультрафиолетовой спектроскопии значительно уже возможностей инфракрасной спектроскопии и спектроскопии комбинационного рассеяния, не ограниченных определенным классом углеводородов. В пределах же указанной области применения особенности ультрафиолетовых спектров поглощения представляют определенные преимущества и позволяют разрешать ряд вопросов, решение которых с помощью колебательных (инфракрасных и комбинационных) спектров менее удобно и надежно либо невозможно. [c.397]


    ФОТОМЕТРИЯ — оптические методы анализа веществ по спектрам поглощения в диапазоне длин волн от ультрафиолетовых до инфракрасных лучей. Ф. применяется в аналитической химии для количественного определения многих элементов. [c.268]

    Ультрафиолетовые спектры белков отличаются сильным поглощением, характеристическим для ароматических фрагментов аминокислот, входящих в их состав фенилаланин, тирозин, триптофан. Эти спектры поглощения используют для аналитического определения остатков указанных аминокислот. Резкий максимум поглощения, характерный для нуклеиновых кислот и нуклеопро-теидов, позволяет определить их содержание в отдельных клетках. [c.361]

    Спектральный анализ (эмиссионный) — физический метод качественного и количественного анализа состава вещества на основе изучения спектров. Оптический С. а. характеризуется относительной простотой выполнения, экспрессностью, отсутствием сложной подготовки проб к анализу, незначительным количеством вещества (10—30 мг), необходимого для анализа на большое число элементов. Спектры эмиссии получают переведением вещества в парообразное состояние и возбуждением атомов элементов нагреванием вещества до 1000—10 000°С. В качестве источников возбуждения спектров прп анализе материалов, проводящих ток, применяют искру, дугу переменного тока. Пробу помещают в кратер одного из угольных электродов. Для анализа растворов широко используют пламя различных газов. Качественный н полуколичественныйС. а. сводятся к установлению наличия или отсутствия в спектре характерных линий и оценки по их интенсивностям содержания искомых элементов. Количественное определение содержания элемента основано на Эмпирической зависимости (при малых содержаниях) интенсивности спектральных линий от концентрации элемента в пробе. С. а.— чувствительный метод и широко применяется в химии, астрофизике, металлургии, машиностроении, геологической разведке и др- МетодС. а. был предложен в 1859 г. Г. Кирхгофом и Р. Бунзеном. С его помощью гелий был открыт на Солнце ранее, чем на Земле. Спектроскопия инфракрасная — см. Ифракрасная спектроскопия. Спектрофотометрия (абсорбционная)—физико-химический метод исследования растворов и твердых веществ, основанный на изучении спектров поглощения в ультрафиолетовой (200—iOO нм), видимой (400—760 нм) и инфракрасной (>760 нм) областях спектра. Основная зависимость, изучаемая в С.,— зависимость интенсивности поглощения падающего света от длины волны. С. широко применяется при изучении строения и состава различных соединений (комплексов, красителей, аналитических реагентов и др.), для качественного и количественного определения веществ (определения следов элементов в металлах, сплавах, технических объектах). Приборы С.—спектрофотометры. [c.125]

    Изучение химического равновесия по спектрам поглощения в ультрафиолетовой, видимой или инфракрасной части спектра. (Можно рекомендовать изучение реакции димеризации родамина 6Ж и ЗБ, определение констант нестойкости в реакции комплексообразования роданистых комплексов, комплексов висмута с тиомочевиной.) [c.466]

    В спектрах поглощения наблюдается определенная закономерность наличие полос поглощения в длинноволновой области у элементов начала и конца группы РЗЭ, за исключением церия и иттербия, и постепенное смещение полос в коротковолновую область у элементов, стоящих в середине группы. Гадолиний поглощает только в ультрафиолетовой области спектра- Это объясняется тем, что по мере приближения к гадолинию основной терм, с которого происходят энергетические переходы при поглощении, лежит относительно более глубоко. [c.84]

    Спектрографическими методами в углях и их растворенных экстрактах определяют спектры поглощения в инфракрасном и ультрафиолетовом излучении. Эти спектры привели к изменению прежних взглядов об ароматических структурах в углях и, помимо того, дали представление о концентрации определенных функциональных связей,таких как—ОН, =0, С—Н алифатического ряда и С—Н ароматического ряда. [c.30]

    Практическое использование реакции дегидрирования в целях исследования нефтяных углеводородов заключается прежде всего в количественном определении и дальнейшем выделении углеводородов, имеющих кольца, способные к дегидрированию. Кроме того, исследование строения образовавшихся ароматических углеводородов (а отсюда и исследование строения исходных гексаметиленовых углеводородов) может быть проведено значительно более надежно, благодаря хорошо разработанным методам анализа ароматических углеводородов при помощи ультрафиолетовых спектров поглощения. [c.317]


    К. Зимина и А. Сирюк описали разработанный ими во ВНИИ НП [358] метод определения содержания ароматических углеводородов —Сз по спектрам поглощения в ультрафиолетовой части спектра. [c.562]

    Содержание нафталиновых углеводородов во фракциях вторичных бициклических ароматических углеводородов, определенное по ультрафиолетовым спектрам поглощения, составляет [c.28]

    Предложены феноменологические способы определения реакционной способности органических многокомпонентных систем частиц по интегральным характеристикам спектров поглощения в видимом и ультрафиолетовом диапазоне [c.114]

    Измеряя оптическую плотность раствора, содержащего вещество с известным спектром поглощения, т. е. известной зависимостью коэффициента экстинкции е от длины волны X, нетрудно определить его концентрацию в растворе. Для этого достаточно измерить оптическую плотность при одной длине волны [обычно для этого проводят измерение при длине волны, соответствующей максимуму на кривой е( 1)1 в кювете известной толщины. Соотношение (10.6) сразу же дает неизвестную нам величину концентрации С. В связи с этим спектроскопия в видимой и ультрафиолетовой области является важным методом определения концентраций веществ (количественного анализа). [c.153]

    При наблюдении в ультрафиолетовых лучах часто используют поглощение лучей комплексом простого состава или даже простым соединением, бесцветным или малоокрашенным в видимой области спектра. В УФ-области спектра некоторые вещества, мешающие при фотометрировании обычными путями, уже не будут мешать, так как их спектры поглощения в определенных длинах волн характеризуются минимумом поглощения УФ-лучей. Зная спектральную характеристику поглощения света растворами соединений, мы можем значительна упростить [c.232]

    Растворы полимеров помимо светорассеяния обнаруживают способность избирательно поглощать световые лучи. По ультрафиолетовым и инфракрасным спектрам поглощения можно судить о строении полимера — наличии в его молекулах определенных атомных групп, сопряженных двойных связей и т. д. Однако поскольку эти методы применяются для исследования растворов не только полимеров, но и органических веществ вообще, мы здесь останавливаться на них не будем. [c.459]

    Спектральные детекторы. Вытекающий из колонки растворитель часто содержит разделяемые вещества, многие с характерным спектром поглощения. Для их определения предложены спектральные методы, основанные на измерениях поглощения света веществом в определенной части спектра, например в ультрафиолетовой, видимой или инфракрасной. Поскольку детектирование ведется непрерывно и нет возможности осуществить измерение во всем спектре поглощения, определяют лишь поглощение при фиксированной длине световой волны, которую выбирают таким образом, чтобы детектор был пригоден для измерения концентрации возможно большего числа веществ. [c.49]

    Эмпирическая теория красителей получила разъяснение с позиций современных электронных представлении. Окраска — это избирательное поглощение света определенной длины волны. Все органические вещества обладают способностью к такому избирательному поглощению в ультрафиолетовой части спектра при этом происходит поглощение энергии и возбуждение электронов, их переход на более высокие орбитали. Хромофорные группировки сдвигают избирательное поглощение в видимую область. Это происходит за счет того, что электроны в сопряженных системах (а таковыми и являются хромофоры) обладают повышенной подвижностью, для их возбуждения достаточно квантов и видимого света с относительно небольшой энергией. [c.329]

    Кроме упомянутых на стр. 85, 307 методах испытания чистоты, применяют метод определения спектра поглощения ацетилена в ультрафиолетовой области. Чистый ацетилен совершенно не поглощает в этой области, и наличие полос абсорбции указывает на присутствие в ацетилене примесей. [c.367]

    Каждая основная область электромагнитного спектра связана по крайней мере с одним типом переходов. Например, поглощение инфракрасного излучения определенной частоты вынуждает связанные атомы колебаться относительно их средних положений, а поглощение ультрафиолетового света приводит к переходам электронов из основного электронного состояния в возбужденное электронное состояние. [c.500]

    Спектры в ультрафиолетовой и видимой области спектра в основном получают, измеряя интенсивность поглощенного монохроматического излучения, прошедшего через кювету с образцом, и сканируя определенную область длин волн. Рабочий диапазон длин волн находится в интервале от 190 до 400 нм (УФ-область) и от 400 до 780 нм (видимая область). [c.148]

    Н. И. Никитин и И. М. Орлова исследовали спектры поглощения ультрафиолетовых лучей диоксан-лигнина ели в смеси спирта с хлороформом. Ими был обнарулсен определенно выраженный максимум при длине волны 283 и растянутый минимум при X = 270—255 тп, . Максимум, полученный Никитиным и Орловой для диоксан-лигнина ели, совпадает с максимумом, найденным Герцогом для других видов лигнина (282—280 т ).  [c.582]

    В литературе имеется много публикаций по использованию инфракрасных спектров поглощения для определения известных соединений, содержащих алкенную функцию >32- 36 Цис-замещен-ные олефины имеют характеристическую полосу при 2,14 мк . Было также предложено определение олефинов по ультрафиолетовому поглощению их комплексов с иодом [c.354]

    Следует отметить, что данные Чарлета и др. по ароматическим углеводородам в газойле не сспостапимы с такими же данными Клерка и др. В протииопол( Жность хроматографическому определению ароматики по числу ароматических колец без учета того, является ли ароматика конденсированной или неконденсированной (Клерк и др.), типы ароматических углеводородов, определенные по спектрам поглощения в ультрафиолетовой области, классифицировались на основе структуры конденсированных колец. Следовательно, ароматика, классифицированная как бензолы , включает не только алкилбензолы, но также и фенилзамещенные парафины. [c.35]

    Так как стандартные определения содержания, масла при составлении, спецификации отнимают много времени и плохо воспроизводимы (в пределах от 0,1 до 1,0% вес.), был предложен метод ультрафиолетовых спектров поглощения. Удельное поглощение на длине волны 230 m/t является надежной характеристикой содержання масла в парафинах из любого сырья или из парафинов, полученных в результате переработки (например, полученных при депарафинизации растворителя), из которых масло было выделено физическими методами без селективного разделения по типам колец углеводородов. Удельное поглощение парафинов на 230 m/t прямо пропорционально содержанию масла, как это установлено стандартным методом ASTM 721-47. Для данной фракции отклонения составляют около [c.289]

    Дибензтиофен — кристаллическое вещество, кристаллизующееся из спирта в виде бесцветных игл и имеющее температуру нлавЛенйя 99—100° С при 3 мм рт. ст. перегоняется при температуре 152— 154 С образует пикрат (температура плавления 125° С). Изучение спектров поглощения дибензтиофена в ультрафиолетовой области показало, что имеется полоса сильного поглощения при 230 яг ц и очень сильного при 290 и 325 т [х [66] и что молекула его имеет планарное строение [66]. Изучение спектров комбинационного рассеяния света [67 I показало наличие определенного сдвига линий бен--зольного кольца. Имеются также упоминания о спектрах флуоресценции. [c.353]

    Описалпые методы позволяют определить группоиой химический состав легкой и тяжелой частей продуктов термических и термокаталитических процессов переработки нефтяного сырья. Для определения углеводородиого состава широко применяют хроматографические и спектральные методы. Так, для количественного определения ароматических углеводородов выделяют их сумму адсорбционной хроматографией, затем перегоняют с ректификацией иа узкие фракции с соответствующими пределами выкипания и определяют их спектры поглощения в ультрафиолетовой области (длины волн 210—470 ммк). По инфракрасным спектрам можно обнаружить углеводороды различных рядои по характерным полосам поглощения для групп СН3 и СНа, двойных связей и т. д. Масс-спектрометрия, применявшаяся вначале для исследования состава легких нефтепродуктов, в настоящее время используется для определеиия структуры тяжелых углеводородов и гетероциклических соединений .  [c.112]

    А, что свидетельствует о- присутствии индановых углеводородов с одним, двумя, пятью и шестью заместителями и моно- и три-замещенных нафталиновых углеводородов. Содержание нафталиновых углеводородов, определенное по ультрафиолетовым спектрам поглощения, во фракциях № 6 и 7 равно 21,8% и 18,3%, соответственно. [c.25]

    Схема спектрографической установки показана на рис. 56, б. Регистрирующим прибором служит спектрограф J2, а в качестве спектроскопического источника света используется спектроскопическая импульсная лампа /, свет от которой, пройдя реакционный сосуд и спектрограф, попадает на фотопластинку 13. Спектроскопическая лампа зажигается через определенный промежуток времени после вспышки фотолитической лампы при помощи блока временной задержки 14. Таким образом по.лучается полный спектр поглощения фотолизуемого раствора. Меняя время задержки, можно получить набор спектров, изменяющихся во времени. В качестве импульсных фотолитических ламп обычно используются трубчатые импульсные ксеноновые лампы. Такие лампы имеют электрическую мощность до нескольких килоджоулей. Световая отдача таких ламп составляет 5- 20% от электрической мощности. Время вспышки ламп колеблется от 10 до 10 с (по уровню 1/е). Иногда для увеличения излучения в УФ-области к ксенону добавляют другие газы, например Нг, или ртуть. Используют им-пульсные лампы и с другим наполнением (Ог, N2, Аг). Ксенон обладает рядом преимуществ перед другими газами он имеет хорошие спектральные характеристики (сплошной спектр излучения), химическую инертность (нет взаимодействия с электродами), низкий потенциал ионизации. С увеличением энергии разряда максимум излучения смещается в ультрафиолетовую область. Разрешающее время импульсной установки определяется временем затухания светового импульса фотолитической вспышки. А время вспышки импульсной лампы в свою очередь зависит от нескольких факторов от типа лампы, электрической энергии и от емкости и индуктивности контура питания. Электрический контур составляют конденсатор, импульсная лампа и соединительные провода. Электрический разряд в контуре носит колебательный или затухающий характер в зависимости от соотнонюния между сопротивлением R, индуктивностью L и емкостью С элементов контура. Наиболее выгодным с точки зрения длительности импульса является соотпошепие Lj . Уменьшение времени затухания т достигается снижением индуктивности соединительных проводов, а также снижением емкости и индуктивности конденсатора (r yZ, ). При этом уменьшение энергии вспышки E = Wj2 компенсируется за счет увеличения напряжения на конденсаторе U. Увеличение [c.157]

    Инфракрасные спектры поглощения. Любое соединение в той или иной степени поглощает падающие на него инфракрасные лучи в определенной области длин волн. Это проявляется в виде полос поглощения в инфракрасном спектре данного соединения. В зависимости от сложности молекул число полос поглощения колеблется от 2—3 до нескольких десятков. Полосы поглощения определяют молекулу в целом, а некоторые из них характерны для отдельных атомных группировок н структурных особенностей молекулы (например, для групп СНг, (]Нз, двойной связи). Спектр смесей представляет собой наложение спектров отдельных соединений. Следовательно, изучая инфракрасные спектры поглощения, можно качественно расшифровать состав углеводородной смеои, а по интенсивности полос в отдельных случаях определять и количественный состав последней. Идентификация ароматических углеводородов хорошо проводится также и по спектрам поглощения в ультрафиолетовой части спектра. [c.62]

    Уменьшение интенсивности света в результате его поглощения растворами обычно выражают величиной оптической плотности, которую измеряют на фотоэлектроколориметрах, сиектрофометрах и других приборах (см. гл. 15). Спектрофотометры позволяют также получить спектры поглощения исследуемых растворов в видимой, ультрафиолетовой и инфракрасной областях спектра и установить, какие участки спектра поглощаются наиболее сильно, т. е. где расположены максимумы поглощения. Для многих растворов спектры поглощения являются очень специфичной качественной характеристикой, так как указывают на наличие и природу определенных атомных группировок. [c.391]

    Широко используются в химии различные формы взаимодействия вещества с электромагнитным излучением рассеяние света при нефелометрии, определение показателя преломления, оптического вращения. Особенно часто для характеристики соединений используются спектры поглощения в различных областях электромагнитных колебаний. Поглощение в области видимого или ультрафиолетового спектра характеризует электронные свойства молекул. Р1нфракрасные спектры отражают колебания ядер. Наконец, дифракция рентгеновских лучей открывает возможность устанавливать геометрию молекул, чему служат также электронография и нейтронография. Дополнительную информацию о строении молекул может дать резонансная 7-спектроскопия (эффект Мессбауэра). [c.22]

    Абсорбционная спектроскопия основана на изучении спектров поглощения вещества, являющихся его индивидуальной характеристикой. Различают споктрофотометрический метод, основанный на определении спектра поглощения или измерении светопоглощения (как в ультрафиолетовой, так и в видимой и инфракрасной областях спектра) при строго определенной длине волны (монохроматическое излучение), которая соответствует максимуму кривой поглощения данного исследуемого вещества, а также фотоколориметрический метод, основаиньи на определении спектра поглощения или измерении светопоглощения в видимом участке спектра. [c.28]

    Ультрафиолетовые газоанализаторы. Принцип их действия основан на избират. поглощении молекулами газов и паров излучения в диапазоне 200 50 нм. Избирательность определения одноатомных газов весьма велика. Дъух- и многоатомные газы имеют в УФ-области сплошной спектр поглощения, что снижает избирательность их определения. Однако отсутствие УФ-спектра поглощения у N2, О2, СО2 и паров воды позволяет во многих практически важных случаях проводить достаточно селективные измерения в присут. этих компонентов. Диапазон определяемых концентраций обычно 10 -100% (для паров Hg ниж. граница диапазона 2,5 10 %). [c.457]

    СПЕКТРАЛЬНЫЙ АНАЛИЗ, метод качеств, и количеств, определения состава в-в, основанный на исследовании их спектров испускания, поглощения, отражения и люминесценции. Различают атомный и молекулярный С. а., задачи к-рых состоят в определении соота. элементного и молекулярного состава в-ва. Эмиссионбый С. а. проводят по спектрам испускания атомов, ионои или молекул, возбужденных разл. способами, абсорбционный С. а.-по спектрам поглощения электромагн. излучения аиализнруем1>1ми объектами (см. Абсорбционная спектроскопия). В зависимости от цели исследования, св-в анализируемо о в-ва, специфики используемых спектров, области длин волн и др. факторов ход анализа, аппаратура, способы измерения спектров и метрологич. характеристики результатов сильно различаются. В соответствии с этим С. а. подразделяют на ряд самостоят. методов (см., в частности, Ато.мно-абсорбционный анализ. Атомно-флуоресцентный анализ, Инфракрасная спектроскопия, Комбинационного рассеяния спектроскопия, Люминесцентный анализ. Молекулярная оптическая спектроскопия. Спектроскопия отражения, Спектрофотометрия, Ультрафиолетовая спектроскопия, Фотометрический анализ, Фурье-спектроскопия, Рентгеновская спектроскопия). [c.392]


Смотреть страницы где упоминается термин Спектр поглощения ультрафиолетовый, определение: [c.239]    [c.25]    [c.35]    [c.124]    [c.174]    [c.356]    [c.140]    [c.239]    [c.59]   
Физическая и коллоидная химия (1960) -- [ c.202 ]




ПОИСК





Смотрите так же термины и статьи:

Ультрафиолетовая поглощения



© 2025 chem21.info Реклама на сайте