Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электролиз ртутным катодом

    И связанного с этим уменьшения потенциала пары 2Н+/Н2 предупредить выделение водорода при электролизе можно также, проводя электролиз с ртутным катодом. Перенапряжение водорода на ртути особенно велико (около —1 в), поэтому применение ртутного катода дает возможность количественно выделять многие металлы, которые нельзя осадить на платине вследствие выделения водорода. Другое преимущество ртутного катода заключается в том, что выделяющиеся металлы образуют с ртутью амальгамы— разбавленные растворы этих металлов в ртути, и значительно меньше переходят в раствор (т. е. окисляются), чем эти же металлы в чистом виде. Вследствие этого на ртутном катоде можно выделить (при низкой концентрации Н+-ионов) даже щелочные металлы. Большое значение имеет применение ртутного катода для отделения Ре + и ряда других катионов от А1 +, Цз+ и т. д. [c.436]


    Вследствие высокого перенапряжения водорода на ртути (около 1 в) и способности ее к образованию амальгам, обладающих меньшими потенциалами, чем сами выделяющиеся при электролизе металлы, электролиз с применением ртутного катода дает возможность проводить ряд разделений, имеющих большое практическое значение. В качестве примера такого разделения рассмот-трим определение содержания титана в стали (или чугуне). [c.446]

    Навеску стали (или чугуна) растворяют в кислотах, после чего раствор подвергают электролизу со ртутным катодом в слабокислой среде. В результате железо, хром, марганец и другие металлы осаждаются на ртутном катоде, образуя амальгамы, а титан, алюминий и ванадий в виде соответствующих ионов остаются 8 растворе. [c.446]

Рис. 62. Прибор для электролиза с ртутным катодом. Рис. 62. Прибор для электролиза с ртутным катодом.
    Какие преимущества дает электролиз с ртутным катодом Почему на нем возможно выделение даже щелочных и щелочноземельных металлов и при каких условиях оио происходит  [c.457]

    VII. Какие условия электролиза раствора хлорида натрня в электролизере с ртутным катодом являются оптимальными  [c.206]

    Электролиз водных растворов поваренной соли ртутным методом отличается от электролиза по диафрагменному методу тем, что процесс протекает в две стадии и в двух взаимно связанных аппаратах электролизере с ртутным катодом, в котором происходит разложение хлористого натрия (или хлористого калия) с образованием хлора и амальгамы натрия (или калия) [c.49]

    Производство хлора, каустической соды и водорода методом электролиза водного раствора поваренной соли на жидком ртутном катоде включает следующие технологические стадии  [c.49]

    Рассмотрим более подробно явление концентрационной поляризации на капельном ртутном катоде при разряде ионов металла, например кадмия. В отличие от рассмотренного случая восстановления ионов серебра на серебряном электроде, где природа металла в процессе электролиза не меняется, при разряде ионов кадмия на ртутном катоде происходит образование амальгамы кадмия. Потенциал амальгамного электрода [c.644]


    При электролизе с ртутным катодом перенапряжение водорода на нем столь велико, что становится возможным процесс разряда иона натрия на катоде, а на аноде и в этом случае идет разряд иона хлора. Металлический натрий, выделяясь на катоде, растворяется в рт]ути, образовывая амальгаму натрия, которая непрерывно выводится из электролизера. В отдельном аппарате (разлагатель) амальгама разлагается водой и образует щелочь и водород, а металлическая ртуть подается специальным насосом в электролизер, где она вновь насыщается разряжающимся натрием. Проток ртути по ванне и разлагателю осуществляется самотеком (за счет уклонов). [c.259]

    При работе с ртутным катодом не требуется разделения продуктов электролиза, и ванны с таким катодом работают без диафрагмы. Для защиты от действия хлора электролизеры с ртутным катодом покрываются резиной (гуммируются). [c.259]

    При электролизе с ртутным катодом разложение амальгамы натрия, как указывалось выше, проводится очищенной водой [c.259]

    Вследствие ограниченности срока службы анодов диафрагмы и гуммировки, электролизеры периодически ремонтируются, при повторном монтаже аноды и диафрагмы сменяются, а электролизеры с ртутным катодом повторно гуммируются. Ванны питаются рассолом—раствором поваренной соли концентрацией 310—315 г/уг. Рассол приготовляется непосредственно на складе, представляющем заглубленный в землю бассейн с хорошей гидроизоляцией. При электролизе с твердым катодом для растворения соли применяют воду, так как получаемая каустическая сода упаривается и вода выводится из цикла. При ртутном электролизе предварительно обесхлоренный обедненный рассол, выходящий из электролизеров с концентрацией 250 — 260 г/л, насыщается твердой солью до концентрации 310 г/л. [c.260]

    Рассол, поступающий на электролиз, представляет многокомпонентную систему, в которой содержатся ионы натрия, хлора, гидроксоний-катион и гидроксид-анион. Последовательность их разряда и образующиеся продукты определяются в соответствии с правилом разряда (21.2.1) величиной их потенциалов разряда, которые зависят от условий электролиза и, весьма существенно, от материала катода. Различают два варианта технологического процесса электролиза водного раствора хлорида натрия электролиз с твердым железным катодом (диафраг-менный метод) и электролиз с жидким ртутным катодом. [c.338]

    Электролиз раствора хлорида натрия с ртутным катодом [c.343]

    Первичные процессы разряда на аноде при электролизе с ртутным катодом те же, что и при электролизе с железным катодом В табл. 21.4 приведены потенциалы разряда ионов и уравнения первичных процессов при электролизе с ртутным катодом. [c.343]

    Практически, при проведении электролиза с ртутным катодом на токоподводах электролизера поддерживается напряжение, равное 4,5 В. [c.343]

    Вторичные процессы при электролизе водного раствора хлорида натрия с ртутным катодом сводятся к двум реакциям  [c.343]

    Так как в электролизе с ртутным катодом не происходит разряда ионов Н3О+, то концентрация ионов гидроксила в катодном пространстве электролизера не увеличивается и вторичные процессы в анодном пространстве отсутствуют. [c.344]

    Электролизер, используемый в процессе электролиза с ртутным катодом, состоит из собственно электролизера (ванны) и разлагателя. Конструктивно разлагатель может быть объединен в одно целое с электролизером или вынесен отдельно. По дну ванны, имеющему небольшой уклон, непрерывно движется тонкий (толщиной 5 мм) слой ртути, являющийся катодом. Образующаяся в процессе электролиза жидкая амальгама натрия концентрацией не более 3-10 мае. дол., самотеком поступает в разлагатель, куда подается вода. Из разлагателя выделяющийся водород поступает в общий коллектор, а раствор гидроксида натрия концентрацией 0,5 мае. дол. направляется в сборник щелока. На рис. 21.3 приведена принципиальная схема электролиза с ртутным катодом. [c.344]

Рис.21.3. Принципиальная. схема электролиза с ртутным катодом Рис.21.3. Принципиальная. <a href="/info/149630">схема электролиза</a> с ртутным катодом
    Себестоимость гидроксида натрия полученного электролизом с ртутным катодом на 10—15% выше, чем себестоимость полученного диафрагменным методом. [c.345]

    Переработка щелока в гидроксид натрия. Электролитический щелок, получаемый электролизом с ртутным катодом не содержит хлорида натрия. Для получения из него гидроксида натрия щелок упаривают до заданной концентрации и затем обезвоживают. Щелок, полу- [c.346]

    В процессе электролиза водного раствора хлорида натрия как с железным, так и с ртутным катодом образуется водород, который является побочным продуктом процесса. В том случае, [c.347]

    Конкретная технологическая схема производства, используемое сырье и методы его подготовки, зависят от метода основной стадии производства — электролиза, проводимого в электролизерах с железным или ртутным катодом. [c.349]


    В чем принципиальное различие процессов электролиза при полу-чении гидроксида натрия с железным катодом и ртутным катодом  [c.355]

    В современной промышленности электролитическое производство хлора и каустической соды основано на использовании двух различных методов электролиза с твердым катодом (диафраг-менный) и с ртутным катодом. Эти методы различаются по реакциям, протекающим на катодах. На твердом катоде в процессе электролиза происходит разряд ионов водорода, а в электролите образуется щелочь. На ртутном катоде разряжаются ионы натрия, в результате образуется амальгама натрия, которую выводят из электролизера и разлагают водой при этом выделяется водород и образуется щелочь. Освобождающуюся при разложении амальгамы ртуть возвращают в электролизер. [c.131]

    Метод с ртутным катодом позволяет получать более чистую каустическую соду, стоимость которой, однако, выше стоимости соды, получаемой по методу с твердым катодом. Возрастание спроса на каустическую соду повышенной чистоты обусловило в последние годы преимущественное развитие электролиза с ртутным катодом. К 1970 г. свыше 65% всего электролитического хлора производилось этим методом. В СССР и США преобладающим [c.131]

    ЭЛЕКТРОЛИЗ С РТУТНЫМ КАТОДОМ [15] [c.159]

    При электролизе чистых растворов поваренной соли выход амальгамы по току может приближаться к 100%. Однако при наличии в растворе примесей солей тяжелых металлов доля тока, расходуемая на выделение водорода, существенно возрастает. Особенно сильное влияние на выделение водорода оказывают соли германия, ванадия, хрома и платины. Действие этих солей объясняется тем, что они восстанавливаются на ртутном катоде до свободного металла и, будучи нерастворимыми в ртути, плавают на новерхности в виде так называемого амальгамного масла . Так как перечисленные металлы обладают низким перенапряжением водорода, последний начинает выделяться на этих участках. [c.160]

    При повышении температуры снижается напряжение на ванне, уменьшается растворимость хлора, но одновременно увеличивается скорость саморазложения амальгамы. Поэтому повышать температуру можно только одновременно с увеличением плотности тока. При плотности тока 8 кА/м электролиз ведут при 75—80 °С. В этих условиях электролизеры с ртутным катодом работают с выходом по току 92—96% . [c.161]

    Пути интенсификации электролиза с ртутным катодом. Техника электролиза с ртутным катодом за период 1960—1970 гг. претерпела существенные изменения. Нагрузка электролизеров за этот период возросла со 100 до 300 кА, и в ближайшие годы следует ожидать освоения электролизеров на 500 кА и более. Благодаря внедрению окисно-рутениевых электродов межэлектродное расстояние уменьшилось с 3—5 до 0,5—1 мм, плотность тока повысилась с 8—10 до 13 кА/м . Такое возрастание плотности тока при одновременном уменьшении межэлектродного расстояния не привело к заметному росту расхода электроэнергии на производство 1 т хлора. За счет увеличения наклона днища удельная закладка ртути уменьшилась от 20 до 11 кг/кА. [c.171]

    Технологическая схема получения хлора электролизом с ртутным катодом [c.176]

    Фактическое напряжение разложения хлористого натрия при электролизе с ртутным катодом значительно выше теоретического и колеблется в пределах 4,4—4,8 в, в зависимости от конструкций ртутных электролизеров и условий их эксплуатации. Следовательно, в процессе электролиза с ртутным катодом расходуется большее количество электрической энергии, чем в диафрагменных электролизерах. Достоинством электролиза ртутным катодом является возможность получения чистой кон центрированной щелочи (до 650—760 г/л NaOH). [c.354]

    Снят баланс и определен состав сульфатных вод Волгодонского химкомбината. Исследования показали, что сульфатные воды проиэвод-отва синтетических жирных кислот не удовлетворяют требованиям, предъявляемым к электролитам (для электролиза ртутными катодами). [c.19]

    При полярографическом методе анализа, введенном в науку в 1922 г. чешским ученым Я. Гейровским, исследуемый раствор подвергают электролизу с капающим ртутным катодом при непрерывно возрастающем напряжении. Электролиз проводится в особом приборе — полярографе, авто.матически записывающем так называемую ввльт-ам- [c.452]

    Написать уравнения реакции электролитической диссоциации воды (автопротолиза), электрохимических процессов на катоде и аноде для электролиза раствора хлорида иатрия с железным и ртутным катодами. Сравнить эти способы электролиза и отметить их преимущества п недостатки. [c.204]

    Подсчитать а) потенциал разложения поваренной соли при электролизе с ртутным катодом, если теплота образования амальгамы натрия равна 1900 кал. Определить также б) сколько килограмм хлора в) едкого нзтри  [c.261]

    Много ртути требуется при производстве щелочей и хлора (электролиз раствора ЫаС1 с ртутным катодом). [c.599]

    В настоящее время каустическую соду (МаОН)ихлор в промышленности получают электролизом поваренной соли в электролитических ваннах с ртутным катодом (рис. УПМб) или с диафрагмой (рис. VIII-17) 1[107]. В США 66% продукции получают диафрагменным сгюсобом. В СССР наибольшее применение нашел способ электролиза с ртутным катодом, так как получаемый продукт отличается высокой степенью чистоты. Кро Ме того, данный способ более экономичен в сравнении с диафрагменным. Существенным недостатком способа является образование токсичных ртутьсодержащих отходов. Образовавшуюся амальгаму натрия разлагают на специальных насадках из соединений различных металлов (циркония, вольфрама), а также графита на едкий натр и водород, а ртуть вновь возвращается в камеру электролиза (см. рис. УПМб). [c.252]

    На ртутном катоде разряд ионов гидроксония Н3О может происходить только при малых, менее 50 А/м , плотностях тока. В условиях промыпхленного электролиза водных растворов хлорида натрия в электролизерах с ртутным катодом плотность тока составляет 5—ЮкА/м .При такой плотности тока, вследствие перенапряжения потенциал разряда ионов Н3О составляет +2,0 В. В то же время, за счет растворения выделившегося металлического натрия в ртути, образуется амальгама КаНёп, представляюш ая качественно новый электрод, потенциал разряда натрия на котором составляет +1,2 В. Поэтому, на катоде будут разряжаться ионы натрия. [c.343]

    Первый патент на электрохимический метод производства хлора был выдан в 1879 г. русским изобретателям И. Глухову и Ф. Ващуку. Б 1897 г. С. Степанов получил патент на аппарат для электролиза хлористого натрия. Промышленное производство хлора электрохимическим путем стало возможно в 80-х годах прошлого века, когда была разработана стойкая пористая цементная диафрагма, пригодная для разделения образующихся при электролизе хлора, водорода и каустической соды. Несколько позже был предложен способ электролиза с ртутным катодом. [c.131]


Смотреть страницы где упоминается термин Электролиз ртутным катодом: [c.17]    [c.205]    [c.41]    [c.49]    [c.259]    [c.304]   
Производство хлора, каустической соды и неорганических хлорпродуктов (1974) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Катод

Катод ртутный

Ртутный электролиз

ртутный



© 2025 chem21.info Реклама на сайте