Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ с применением электролиза с ртутным катодом

    Важное значение для разделения ряда элементов имеет электролитическое осаждение на ртутном катоде, причем осаждение облегчается образованием амальгам. Так, например, для определения примеси алюминия в железных сплавах железо и многие другие металлы осаждают из сернокислого раствора на ртутном катоде, причем алюминий остается в растворе. Наконец, можно указать на применение анодного растворения металлов. Так, например, для определения неметаллических включений в стали и различных цветных сплавах поступают следующим образом. Образец металла опускают в раствор соответствующего электролита и включают ток, причем исследуемый металл является анодом. Во время электролиза металл переходит в раствор, а неметаллические примеси остаются в виде осадка. Этот метод имеет большое значение для фазового анализа металлов. [c.190]


    Успешное применение метода отделения щелочью может быть лишь в том случае, когда составление калибровочного графика илн установление титров рабочих растворов проводится точно в таких же условиях, в которых выполняется анализ. Тогда этот метод оказывается более удобным и быстрым, чем, например, отделение сопутствующих элементов от алюминия электролизом с применением ртутного катода или хроматографическое отделение. [c.169]

    В настоящее время электрохимические методы применяются для разделения соединений большинства химических элементов и оказались очень удобными вследствие того, что они не требуют введения в анализируемый раствор посторонних веществ. Используя различные способы электрохимического осаждения с применением платиновых или других электродов и ртутного катода, а также внутреннего электролиза (см. гл. VI, 5), можно разделять катионы алюминия, титана, циркония, ванадия, урана от катионов хрома, железа, кобальта, никеля, цинка, меди, серебра, кадмия, германия, молибдена, олова, висмута и других элементов. Можно также отделять примеси от основных компонентов при анализе цветных металлов, их сплавов и руд. [c.357]

    При относительно небольшой плотности тока (0,01 а/смР-) оно достигает весьма значительной величины (1,2 в). Это обстоятельство может быть использовано для разделения металлов. При электролизе подкисленных растворов с применением ртутного катода все металлы, ионы которых разряжаются на ртути при потенциалах еще более отрицательных, чем ионы водорода, останутся в растворе. Не осаждаются в этих условиях щелочные и щелочноземельные металлы, алюминий, металлы подгрупп скандия, титана и ванадия, вольфрам, уран. Таким образом удается отделить эти металлы от железа, хрома, цинка, кадмия и других металлов, которые разряжаются на ртути и образуют с ней амальгаму. Этот метод широко применяется при анализе алюминиевых сплавов для отделения железа. При анализе сталей железо таким же образом отделяется от алюминия, титана, ванадия и некоторых других компонентов сталей. Все эти металлы остаются в сернокислом растворе взятой навески стали, а железо уходит в амальгаму. Такое предварительное групповое разделение весьма облегчает весь ход анализа и может применяться для самых различных сплавов. [c.294]

    Метод электролитического отделения одних металлов от других нашел широкое применение в техническом анализе, особенно в анализе железа и железных сплавов. Проводя электролиз сернокислого раствора стали на ртутном катоде, можно отделить л елезо от таких компонентов стали, как алюминий, титан, ванадий и некоторые другие, быстрому и точному определению которых мешает железо. Указанные компоненты остаются в растворе, а железо переходит в амальгаму ртутного катода. Это разделение значительно облегчает дальнейший ход анализа. [c.314]


    Эгот метод разработан для отделения фосфата от железа, кобальта, никеля, молибдена и т. д., фосфат при этом остается в растворе. Методика была использована [46] для отделения малых концентраций фосфора от железа при анализе особо чистого железа. Опубликован обзор по применению электролиза на ртутном катоде [47]. [c.442]

    В качестве примера применения этого метода можно указать на определение алюминия и магния в цинковых сплавах, используемых для литья под давлением. Сплавы могут содержать 1,5—4,5% алюминия и 0,02— 0,10% магния и небольшие количества меди и железа. Анализ проводят с 1 г сплава. Его растворяют в серной кислоте, разбавляют раствор до 200 мл и переносят его в электролизер с ртутным катодом. Раствор подвергают электролизу в течение ночи при силе тока 1,0—1,5 а или при большей силе тока в течение менее длительного отрезка времени при условии перемешивания. Для испытания полноты осаждения цинка из электролизера берут пипеткой 1 мл раствора и обрабатывают его [c.111]

    Следующий ход анализа был разработан для определения алюминия в подшипниковых металлах, припоях и т. п. (табл. 14), но он может иметь более широкое применение. Большинство мешающих металлов удаляют путем электролиза с ртутным катодом. [c.146]

    Железо, хром, кобальт, никель, цинк и многие другие элементы могут быть легко и просто удалены пз разбавленного сернокислого раствора электролизом с ртутным катодом [32]. Алюминии остается в разбавленном кислом растворе. Этот метод отделения алюминия не нашел широкого применения при анализе силикатных и других пород, так как титан, ванадий, цирконий и фосфор остаются в растворе вместе с алюминием. [c.101]

    Все металлы могут выделяться на ртутном катоде, с тем только различием, что отрицательные металлы (от лития до алюминия — см. табл. 16) не могут выделяться в твердом виде, а образуют амальгамы малых концентраций. Марганец частич-гно выделяется на ртутном катоде, а частично остается в растворе. Разделение металлов электролизом на ртутном катоде нашло большое применение в практике технического анализа, -о чем будет сказано ниже. [c.154]

    В зависимости от состава железной руды и связанных с этим требований методического характера, на данной стадии анализа возможны, кроме приведенного, п другие варианты анализа, а также применение электролиза с ртутным катодом (стр. 18 и 23). [c.15]

    АНАЛИЗ ЖЕЛЕЗНОЙ РУДЫ С ПРИМЕНЕНИЕМ ЭЛЕКТРОЛИЗА С РТУТНЫМ КАТОДОМ [c.23]

    Анализ железной руды с применением электролиза с ртутным катодом значительно упрощает общий ход анализа и сокращает его во времени. [c.23]

    Анализ с применением электролиза с ртутным катодом 25 [c.25]

    Анализ железной руды с применением электролиза с ртутным катодом можно провести также следующим путем. [c.25]

    Применение электролиза с ртутным катодом значительно упрощает анализ и дает превосходные результаты. [c.237]

    Кроме описанной схемы анализа титаномагнетитовых руд рекомендуется также анализ с применением электролиза с ртутным катодом. В результате электролиза удаляются из раствора Fe, Сг, Мн (частично), Ni и Со [c.267]

    Применение электролиза с ртутным катодом значительно упрощает анализ рекомендуется для особо точных и арбитражных анализов. [c.268]

    Анализ хромита с применением электролиза с ртутным катодом производится следующим образом. [c.377]

    Изучение выделения следовых количеств марганца на ртутном электроде из растворов сульфата бериллия и влияния различных факторов на скорость выделения приводится в другой ра боте [706а]. Кроме того, метод электролиза с ртутным катодом был применен Клемперером и Мартином [568а] для отделения железа от бериллия при анализе крови. [c.163]

    По ГОСТ 13047.17—67 магний в никеле определяют фотометрическим методом с феназо после отделения Ni, Fe, Со и других элементов электролизом на ртутном катоде и переведения оставшихся тяжелых металлов в комплексные цианиды. Этот метод целесообразно применять для контрольных и арбитражных анализов, а для массовых анализов он неудобен из-за применения электролиза с ртутным катодом. [c.213]

    Как правило, оптимальные значения потенциала лучше всего можно выбрать, используя поляризационные кривые, то есть кривые ток—потенциал. В идеальном случае такие кривые необходимы для всех составляющих, которые присутствуют в системе если эти кривые были получены при условиях, близких к фактическим условиям электролиза, то легко можно выбрать нужное значение потенциала рабочего электрода. Однако на практике удобнее при выборе потенциалов для электролиза с макроэлектродами использовать данные, полученные из полярографических или других вольтамперометрических экспериментов. Если же в распоряжении экспериментатора нет подходящих данных или если есть основания полагать, что полярографические данные не являются правильными для больших ртутных катодов, весьма желательно, чтобы кривые ток — потенциал были экспериментально определены на самой кулонометрической системе. Даже с большими электродами можно построить по точкам достаточно точные поляризационные кривые при использовании потенциостата для кратковременной поляризации рабочего электрода, не вызывающей значительного истощения раствора при электролизе. Всесторонний анализ использования поляризационных кривых в потенциостатической кулонометрии и в других электроаналитических методах содержится в книге Шарло, Бадо-Ламблинга и Тремийона [14], которые также поддерживают применение таких данных при выборе растворителей и фоновых электролитов. [c.21]


    Был описан ряд приборов, предназначенных для потенциостатического анализа меди [47, 69—72]. Муша и 0га-ва [73] исключили применение потенциостата они осаждали медь на медный катод, замкнутый накоротко с насыщенным кадмиевым амальгамным анодом в растворе сульфата. Количество меди (II), первоначально имевшейся в растворе, подсчитывалось с удовлетворительной точностью из снятой кривой ток—время. Мейтес [74] рассмотрел погрешности, связанные с методикой определения положения конечной точки при потенциостатической кулонометрии, и предложил формулу, сводящую к минимуму погрешности экстраполяции. Процесс восстановления меди (II) до. металлической меди на ртутных катодах в цитратном электролите был использован для создания кулометра [75], измеряющего количества электричества до 150 к. Измерения производили по поглощающей способности комплекса, содержащего медь (II), до и после электролиза. [c.52]

    Лингейн [108] предложил полярографическую методику для определения свинца, меди, олова, никеля, цинка с применением последовательного удаления примесей путем потенциостатического электролиза. Проблему одновременного определения таллия и свинца решил Мейтес [106], который применял сочетание полярографического и кулонометрического методов. Смит и Тейлор [42] удаляли свинец из растворов, содержащих ионы других металлов, путем осаждения его на ртутный катод с последующим повторным электролитическим растворением, завершающим анализ. [c.57]

    Разделения с применением ртутного катода при постоянной силе тока, хотя и непригодны для электрогравиметрических определений, однако часто используются как вспомогательное средство при выполнении анализа другими методами. Касто приводит обзор различных методов электролитического удаления примесей металлов из урана. Особенно интересная методика, разработанная Фурманом и Брикером, заключается в количественном осаждении различных металлов на небольшом ртутном катоде. Ртуть удаляют дистилляцией, а остаток анализируют полярографическим или колориметрическим методом. Такая же методика может быть применена для выделения следов примесей из других металлов, например алюминия, магния, щелочных и щелочноземельных металлов, которые, подобно урану, при электролизе в кислом растворе не образуют амальгам. Паркс, Джонсон и Ликкен применяя несколько небольших порций ртути, удаляли из растворов большие количества тяжелых металлов, а именно меди, хрома, железа, кобальта, никеля, кадмия, цинка, ртути, олова и свинца, и сохраняли в нем полностью даже небольшие количества алюминия, магния, щелочных и щелочноземельных металлов для последующего определения этих элементов подходящими методами. [c.350]

    КУЛОНОМЕТРИЯ — один из электрохимических методов анализа, основанный на измерении количества электричества, расходуемого на электролитич. восстановление или окислеиие. Необходимое услопие для применения К. — 100%-ный выход по току данного вещества. В частности, при катодном нроцессе должны отсутствовать такие побочные процессы, как восстановление ионов водорода или растворенного кислорода, а также продуктов, образующихся на аноде. Первый из этих процессов устраняется применением ртутного катода, обладающего высоким перенапряжением для выделения водорода, остальные — работой в атмосфере инертного газа и применением серебряного анода (при электролизе галогенидов) или соответствующих анодных деполяризаторов. Сила тока во время электролиза не остается постоянной поэтому для измерения количества электричества обычно пользуются кулонометрами различных типов (модным, серебряным, газовым) предложены электронные схемы приборов. [c.443]

    Ряд реактивов, первоначально описанных для качественного открытия алюминия, затем был предложен и для его количественного определения (в их числе и З-окси-2-нафтойная кислота, позволяющая путем капельной реакции открывать 0,0002 мкг А1) [158]. Такие реактивы сведены в табл. IV-2. Морин применен для определения алюминия в воде [367]. При использовании 8-оксихинальдина для анализа окиси тория влияние мешающих элементов устраняют путем экстракции теноилтрифтора-цетоном и введения соответствующих комплексообразователей [228]. Известная флуоресцентная реакция алюминия с 8-оксихи-нолином применена для его прямого определения в воде [288], в бронзе [229], в вольфраме и его окислах [204], в металлических магнии [151] и уране [152], в солях висмута (после удаления последнего электролизом на ртутном катоде) [153] и в реактивных кислотах [320]. Реакция с понтахром сине-черным Р (эриохром сине-черным В) [360] использована при анализе сталей, бронз и минералов [355], морской воды [337], сульфида цинка (то же, после отделения мешающих примесей электролизом на ртутном катоде) [204], металлических магния [257, 259], германия [119] и сурьмы [123]. Отмечено применение для тех же целей понтахром фиолетового SW [327]. Салицилал-2-аминофенол, предложенный ранее для качественных целей [242], был использован для анализа реактивов высокой степени чистоты [35, 36, 76]. Указанная в табл. IV-2 чувствительность достигнута при условии тщательной очистки используемых буферных растворов. Для устранения помех со стороны больших количеств железа при анализе сталей предложено осаждать его избытком едкого натра в присутствии пергидроля [295], а при анализе силикатов — восстанавливать до двухвалентного состояния с последующей маскировкой 2,2 -дипиридилом [354] в обоих случаях определение алюминия производят путем его фотометри-рования в виде 8-оксихинолината. [c.143]

    Наибольшее число исследований посвящено определению бериллия с самым чувствительным для него реактивом — морином. В первых работах по его использованию в анализе минерального сырья бериллий выделяли путем осаждения и сплавления, а флуориметрирование производили в присутствии пирофосфата и цианида [326, 327]. Позднее для разделения были применены электролиз с ртутным катодом и соосаждение с пирофосфатом алюминия [150, 154], хроматографирование на силикагеле [340, 341], соосаждение с фосфатом титана [147], экстракция посредством ацетилацетона [334] или масляной кислоты [46]. Исследована возможность маскировки элементов, мешающих определению бериллия, хлоридом олова, аскорбиновой, лимонной и другими оксикарбоновыми кислотами, комплек-соном 111 [125, 334]. Проведена работа по установлению состава бериллий-моринового комплекса [196, 280, 336]. Применение пиперидинового буферного раствора с pH 11,5, замена этилен-диаминтетрауксусной кислоты на диэтилтриаминопентауксус-ную и введение в раствор алюминия для снижения адсорбции бериллия на стекле позволили повысить избирательность и воспроизводимость определений [280, 336]. [c.145]

    Для флуоресцентного определения циркония в рудах предложен и 3-оксифлавои. Сам реактив флуоресцирует зеленым светом, его циркониевый комплекс — синим, поэтому при измерении яркости свечения растворов используют синий светофильтр. Для отделения от алюминия и некоторых других элементов применено осаждение едким натром, железо удаляют посредством электролиза на ртутном катоде [182]. В развитие более ранних работ по применению в фотометрическом анализе кверцетина [1] описано количественное определение циркония на бумажных хроматограммах в присутствии титана [50, 109]. При флуориметрировании с кверцетином в растворах для отделения от мешающих примесей использована экстракция циркония смесью теноилтрифторацетона с толуолом в зависимости от юстировки флуориметра количественному определению в объеме 25 мл доступны его содержания в пределах от 1 до 25 мкг или от 0,2 до 5 мкг [240]. Недавно разработано определение циркония с еще одним представителем группы флавополов — дати-стином этот метод применен к анализу алюминиевых и магниевых сплавов [49]. [c.190]

    В зависимости от состава железной руды и связанных с этим особенностей методического характера, на данной стадии анализа руды возможны, кроме приведенного, и другие варианты анализа, а также применение электролиза с ртутным катодом (стр. 17 и 28). Значительного ускорения в выполнении анализов руд несложного состава можно достичь, применяя комплексонометриче-ские методы определения Ее, А1 и некоторых других элементов (см. стр. 51). [c.12]

    Примененне электролиза с ртутным катодом значительно упрощает общий ход анализа железной руды и сокращает время его выполпения. [c.28]


Смотреть страницы где упоминается термин Анализ с применением электролиза с ртутным катодом: [c.139]    [c.111]    [c.501]   
Смотреть главы в:

Методы химического анализа минералов и горных пород Том 2 -> Анализ с применением электролиза с ртутным катодом

Методы химического анализа железных, титаномагнетитовых и хромовых руд -> Анализ с применением электролиза с ртутным катодом


Методы химического анализа железных, титаномагнетитовых и хромовых руд (1966) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ применение

Катод

Катод ртутный

Ртутный электролиз

Электролиз применение

ртутный



© 2024 chem21.info Реклама на сайте