Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлор, производство электрохимические методы

    Электрохимический метод позволяет получать наряду с основным продуктом производства ценные побочные продукты, применять более дешевое сырье и полнее его использовать. Так, при электролизе растворов хлористого натрия выделяются одновременно хлор, едкий натр и водород. При электрорафинировании металлов отходом является шлам, содержащий благородные металлы зо гото и серебро (при рафинировании меди), платину и палладий (при рафинировании никеля). Стоимость получаемых благородных металлов полностью окупает расходы по рафинированию. [c.11]


    В настоящее время хлор и едкие щелочи вырабатываются двумя электрохимическими методами. Один из них — электролиз с с твердым катодом (диафрагменный метод производства), другой— электролиз с жидким ртутным катодом (ртутный метод производства), Оба метода дают хлор приблизительно одной и той же чистоты. [c.36]

    Особенностью и преимуществом электрохимических методов производства перед химическими является сравнительная простота и дешевизна получения ряда продуктов, таких как гидроксид натрия и хлор, щелочные и щелочноземельные металлы, алюминий, пероксидные соединения, различные неорганические вещества высокой степени чистоты, обычно недостигаемой при химических методах их получения. Благодаря возможностям электрохимических технологий сформировалась целая отрасль современной индустрии — электрохимическая промышленность, к наиболее важным задачам которой относится обеспечение народного хозяйства ценными неорганическими продуктами (гидроксидами щелочных металлов, дезинфицирующими растворами, неорганическими окислителями), высокочистыми металлами, химическими источниками тока. [c.5]

    Производство хлора, щелочи и водорода относится к числу самых крупнотоннажных электрохимических производств. В настоящее время в мире производится свыше 30 млн. т хлора ежегодно. Подавляющее количество хлора получают электрохимическим методом — электролизом водных растворов хлорида натрия. [c.141]

    Дальнейшее совершенствование процесса производства гидроксида натрия и хлора электрохимическим методом заключается в  [c.345]

    В электролизерах с диафрагмой применение металлических анодов позволяет повысить плотность тока до 2—3 кА/м , обеспечить стабильный во времени энергетический и температурный режимы работы электролизера и снизить затраты электроэнергии на производство при одновременной его интенсификации. Применение металлических анодов облегчает решение конструкции биполярного электролизера с диафрагмой, открывает новые пути развития электрохимического метода получения хлора и каустической соды как по методу с ртутным катодом, так и по способу электролиза с диафрагмой. [c.22]

    Электрохимические методы имеют существенные преимущества перед химическими. В некоторых случаях использование электрической энергии для осуществления химических реакций чрезвычайно упростило технологию получения того или иного продукта, а вм-есте с тем во много раз удешевило его производство и расширило возможности применения, В настоящее время электрохимические способы полностью вытеснили химические способы получения алюминия, магния, натрия, хлора, перекисных соединений и многих других продуктов. Иногда электрохимические способы являются единственно возможными для осуществления процесса, например при покрытии изделий некоторыми металлами и их сплавами, при изготовлении и размножении металлических копий с неметаллических и металлических предметов и др. [c.11]


    Электрохимические производства по сравнению с химическими обладают тем преимуществом, что в них роль окислителя или восстановителя выполняет электрический ток и таким образом исключается необходимость введения дополнительных реагентов. С этой точки зрения электрохимические процессы могут быть с успехом использованы для создания малоотходных технологических процессов. Примером таких процессов может служить электролиз воды, получение хлора и щелочи диафрагмен-ным нли мембранным методами. Следует отметить, что проблема создания малоотходных производств стала особенно острой лишь в последние годы. Пока работы в этом направлении только развертываются, хотя и имеется возможность снизить отходы в уже действующих производствах за счет применения электрохимических методов. Так, например, в анилинокрасочной промышленности для восстановления ароматических нитросоединений используют насыпные железные стружки в соляной кислоте. В результате реакции образуются отходы хлорида железа, идущего в отвал. Применение электролиза позволит полностью исключить образование этого нежелательного отхода. [c.230]

    Уже с первых дней своего существования стали очевидны преимущества электрохимического способа перед химическим. В мировом производстве доля хлора, получаемого химическими методами, снизилась с 33,9% в 1914 г. до 1,2% в 1968 г. [c.131]

    Несколько отличной областью применения электрохимических методов в органическом синтезе является восстановление органических соединений амальгамой натрия в аппаратах-разлагателях при производстве хлора с применением ртутных катодов. Однако в настоящей главе рассматриваются только процессы прямого электрохимического синтеза органических соединений. Поскольку эффективность амальгамных методов определяется главным образом конъюнктурой производства хлора и щелочи, она должна разбираться в непосредственной связи с так называемой, проблемой щелочного балласта . [c.444]

    Электрохимические методы получения хлоратов требуют соблюдения таких же мер предосторожности, как и другие электрохимические производства, в частности производства хлора и гидроксидов щелочных металлов (разд. 3.10). Однако определенные свойства хлоратов обусловливают ряд особенностей. [c.158]

    В настоящее время преобладающая роль в производстве хлора и каустической соды принадлежит электрохимическим методам их получения по способу электролиза водных растворов поваренной соли. [c.14]

    Тем не менее в ближайшее десятилетие электрохимические методы производства хлора и каустической соды, по-видимому, сохранят главную роль [49]. [c.20]

    В начале развития электрохимического метода производства хлора и каустической соды, когда технология получения искусственного графита еще не была реализована в промышленности, в качестве анодного материала использовались угольные блоки и в меньшей стенени — отливки из магнетита. Значительное применение в качестве анодного материала находила также платина как в чистом виде, так и в виде платиноиридиевого сплава. [c.57]

    Одной из проблем электрокатализа, где существенную роль, могут сыграть углеродные материалы, является защита окружающей среды [33]. Общим положением является то, что на основе электрохимических методов могут быть развиты производства с уменьшенным количеством отходов. Среди новых процессов следует упомянуть диафрагменный метод производства хлора, электросинтез органических веществ, электрохимический метод синтеза серной кислоты, прямой электрохимический метод переработки сульфидных руд и др. Особенно эффективным может оказаться применение электрохимических методов для крупномасштабного преобразования энергии. Можно полагать, что в будущем решающее преимущество получат способы преобразования энергии, обеспечивающие работу в замкнутых циклических системах, оказывающих минимальное влияние на экологическую структуру биосферы при максимальной эффективности трансформации энергии. Такие циклы должны базироваться на реакциях, включающих ограниченное число веществ, входящих в биоэнергетическую сферу Земли. Это реакции [c.14]

    Правила и нормы техники безопасности и промышленной санитарии для строительства и эксплуатации производства электрохимического каустика, хлора и водорода по диафрагменному методу. М, Госхимиздат, 1957. [c.278]

    Этот процесс был предложен в начале развития электрохимического метода производства хлора и каустической соды [12], частично применялся в промышленности, но не нашел широкого распространения, так как замена каустической соды более дешевым продуктом — кальцинированной — экономически нецелесообразна. В последнее время в связи с предполагаемым избыточным производством каустической соды вновь обратились к этому процессу [13]. Предложено проводить карбонизацию католита в катодном пространстве электролизера с целью получения карбонатов. Замена ионов ОН , об.надающих очень высокой подвижностью, менее подвижными [c.281]


    Широкое распространение электрохимические приемы получили при изготовлении источников электроэнергии. По некоторым данным, суммарная мощность химических источников тока на земном шаре превышает мощность всех электростанций. Значение электрохимических методов в системе химической технологии может быть проиллюстрировано хотя бы следующими двумя примерами. Мировое производство хлора в 1974 г. составляло около 24 млн. т. Если производство хлора будет продолжать возрастать на 7% в год, как в последние годы, и эта тенденция будет продолжаться, то к 1980 г. выпуск его достигнет 35 млн. т, к 1990 г. — 70 млн. тик 2000 г. возрастет до 140 млн. т . Производство хлората натрия составило в 1977 г. около 700 тыс. т в год .  [c.6]

    Получение хлоратов электрохимическим методом предшествовало производству их химическими методами. Масштабы производства электролизом до первой мировой войны были больше, чем химическим путем. Лишь в период между первой и второй мировыми войнами превалирующее значение имел химический способ в связи с развитием хлорной промышленности. В настоящее время основным методом производства хлората натрия является электролиз раствора хлорида натрия За рубежом хлорат натрия производят химическим путем лишь на заводах, имеющих затруднения в использовании хлора [c.712]

    Из металлов высокой коррозионной стойкостью при анодной поляризации в большинстве электролитов обладают чистая платина и ее сплавы с другими металлами платиновой группы (иридий, родий). Высокая коррозионная стойкость и приемлемые электрохимические характеристики платины и ее сплавов позволили использовать ее в качестве анодного материала на первых этапах развития процесса получения хлора и хлоратов электрохимическими методами, а также применять аноды из платины и ее сплавов в производстве перхлоратов, хлорной кислоты, надсерной кислоты и ее солей. [c.14]

    На ранних стадиях развития электрохимических методов производства, когда технология получения искусственного графита еще не была освоена в промышленности, в качестве анодного материала использовали угольные блоки и в меньшей степени отливки из магнетита. Широко применяли как анодный материал плативу, а также сплав платины и иридия. Высокая стоимость платины, ее дефицитность, сложность конструкций анодов из платиновой сетки или фольги и большой расход платины на изготовление электродов привели к тому, что платиновые аноды, так же как угольные и магнетитовые в производстве хлора, каустической соды и некоторых других продуктов, были полностью вытеснены графитированными анодами. Платиновые аноды сохранились только в производствах перхлоратов, перекиси водорода и других производствах. [c.81]

    Электрохимический метод производства хлора и щелочей начал эксплуатироваться с конца прошлого столетия, главным образом для получения щелочей. Хлор в то время являлся побочным продуктом, применявшимся почти исключительно для получения хлорной извести, необходимой для отбелки бумаги и тканей. [c.326]

    Электрохимический метод используется при электролизе воды (одновременно получается и кислород) и производстве хлора электролизом водного раствора поваренной соли. [c.82]

    Электрохимические системы широко применяются в технике. К числу промышленных процессов можно отнести гальваностегию и рафинирование, электрополирование и электрохимическую обработку, а также электрохимическое производство хлора, каустической соды, алюминия и других веществ. Значительный интерес представляет преобразование энергии в-топливных элементах, а также в первичных и вторичных источниках тока. Кроме того, нельзя забывать о проблеме электрохимической коррозии. Электрохимические процессы используются и в некоторых опреснительных системах. Электрохимические методы находят применение в качественном и количественном анализе. Идеальные электрохимические системы представляют интерес для изучения процессов массопереноса и механизмов электродных реакций. Эти системы полезны также при определении основных характеристик переноса веществ. [c.331]

    В некоторых отраслях прикладной электрохимии не удается создать хшш-ческпе процессы, близкие по экономичности к используемым электрохимическим. Происходит очень быстрый рост производства электрохимическими методами таких продуктов, как хлор и каустическая сода, хлораты, перхлораты, и хлорная кислота, перманганат калия, щелочные металлы тг ряд других продуктов. [c.9]

    Быстрое развитие хлорной промышленности сопровождалось вытеснением химического способа производства электрохимическим. Наибольшая доля производства хлора приходится на диафрагменный метод электролиза раствора поваренной соли. [c.390]

    Производство хлора и каустической соды электрохимическим методом непрерывно растет, а технология и аппаратура совершенствуются. [c.4]

    В связи с развитием производства электроэнергии в начале XX в. химические способы получения хлопа были полностью вытеснены более экономичным электрохимическим методом, которым в настоящее время получают более 99% хлора, вырабатываемого во все.м мире. При электрохимическом методе одновременно с хлором образуется эквивалентное количество каустика. [c.29]

    Электрохимический метод производства хлора с одновременным получением щелочи и водорода начал применяться в конце XIX — начале XX вв. благодаря развитию в широких масштабах промышленного производства электроэнергии. По этому методу на 1 т хлора расходуется 2800—3500 кет ч электроэнергии. [c.32]

    В настоящее время электрохимический метод является основным в производстве хлора и каустической соды. Он основан на свойстве водных растворов хлористых солей щелочных металлов — поваренной соли или хлористого калия — разлагаться под действием постоянного тока с образованием газообразного хлора, раствора едкой щелочи и газообразного водорода. [c.32]

    В химической промышленности используются процессы, в которых в качестве промежуточных стадий получают хлорсодержащие продукты, а на последующих стадиях хлор выводится в виде хлоридов. В этом с.лучае хлориды становятся побочными продуктами производства, которые выводятся из цикла со сточными водами. Значительное количество сточных вод усложняет и удорожает производство продуктов. Примером такого процесса может служить синтез окиси пропилена хлорным методом. При осуществлении этих процессов электрохимическим методом практически ликвидируются сточные воды, так как хлорид служит возобновляемым в процессе источником хлора. [c.133]

    ОРТА используют прежде всего в такой важной и многотоннажаоЁ отрасли прикладной электрохимии, как производство хлора и каустической соды электролизом водных растворов хлоридов щелочных металлов, а также и в производстве хлоратов электрохимическим окислением водных растворов поваренной соли. Проводятся работы по применению этих анодов и в других отраслях прикладной электрохимии, в частности, при получении гипохлорита натрия электрохимическим методом, электролизе морской воды, обессоливании морской и минерализованных вод электродиализным методом, а также и в других процессах прикладной злектрохимии. [c.206]

    На электрохимический метод производства хлора первый патент был выдан в 1879 г. русским изобретателям Н. Глухову [c.253]

    Промышленное производство хлора электрохимическим методом началось в 1890 г. Уже с первых дней своего существования электрохимический метод показал большие преимущества перед химическим и в результате к концу первого десятилетия текущего столетия почти совершенно вытеснил старые химические способы. [c.254]

    Электрохимический метод применяют для производства хлорнокислых солей почти так же давно, как и для производства хлорноватокислых солей. Исходным материалом служат растворы хлорноватокислой соли, не содержащие ионов хлора. [c.380]

    Первый патент на электрохимический метод производства хлора был выдан в 1879 г. русским изобретателям И. Глухову и Ф. Ващуку. Б 1897 г. С. Степанов получил патент на аппарат для электролиза хлористого натрия. Промышленное производство хлора электрохимическим путем стало возможно в 80-х годах прошлого века, когда была разработана стойкая пористая цементная диафрагма, пригодная для разделения образующихся при электролизе хлора, водорода и каустической соды. Несколько позже был предложен способ электролиза с ртутным катодом. [c.131]

    Большую отрасль современной химической промышленности составляет электросинтез неорганических и органических соединений. При помощи электрохимических методов могут быть получены водород, кислород, персульфаты, перхлораты, хлор, фтор, щелочи, ади-подинитрил, фармацевтические препараты, перфторированные органические соединения и ряд других веществ, которые или используются затем непосредственно, или являются промежуточными в процессе приготовления различных продуктов. Электролиз воды, при помощи которого разделяются изотоны водорода, используется в процессе получения тяжелой воды. Производство таких важных полимеров, как полихлорвинил и перхлорвинил, в значительной степени базируется на электрохимическом производстве хлора. Промышленные методы обогащения атомного горючего были бы неосуществимы без гексафторида урана, для получения которого необходим продукт электролиза — свободный фтор. Многие процессы, которые осуществляются обычным химическим путем, могут быть реализованы электрохимическими методами, и критерием при выборе того или иного пути служат экономические соображения. [c.12]

    Серьезным конкурентом электрохимических методов производства хлора в ближайшей перспективе могут явиться методы окислительного гидрохлорирования различных органических продуктов с помощью хлористого водорода, ползгчаемого в качестве побочного продукта. Этот процесс широко используется за рубежом, в настоящее время он разрабатывается в нашей стране и позволит заменить хлор в ряде промышленных синтезов. [c.20]

    Как известно, вначале для производства хлора использовались способы окисления соляной кислоты перекисью марганца (способ Вельдона) или воздухом в присутствии катализаторов (способ Дикона). В начале XX века эти способы были полностью вытеснены электролизом водных растворов поваренной соли. При производстве хлора электрохимическими методами с твердым катодом и диафрагмой и с ртутным катодом получались одновременно эквивалентные количества каустической соды или едкого кали при электролизе растворов KG1. В течение длительного времени потребности народного хозяйства в каустической соде превышали потребность в хлоре и недостаюш ее количество каустической соды производилось химическим способом из кальцинированной соды. Однако применение во многих отраслях народного хозяйства широкого ассортимента различных хлорпродуктов привело к необходимости очень быстрого развития производства хлора и его производных. При этом потребность в хлоре росла быстрее, чем в каустической соде [1—4], и вновь возник интерес к химическим методам производства хлора, поскольку они не связаны с одновременным получением каустической соды. [c.280]

    Даже при малых концентрациях гипохлорита натрия (10—15 г/л) расход электроэнергии примерно в 2 раз 1, а Na l в 6—10 раз выше, чем при химическом методе получения гипохлорита натрия из каустической соды и элементарного хлора. Поэтому электрохимический способ получения гипохлорита натрия не нашел широкого применения в промышленности, онч имеет важное техническое значение лишь как одна из стадий производства хлоратов электрохимическим способом. [c.384]

    К электрохимическим методам производства водорода относится прежде всего электролиз воды, а также электролиз водных растворов Na l для получения хлора и каустической соды одновременно в качестве побочного продукта электролиза ЫаС1 получается дешевый водород. Отметим, что в 1969 г. мировая хлорная промышленность (без СССР) выработала около 4,5 млрд. м водорода, который удалось использовать лишь в малой степени, главным образом из-за отдаленности его потребителей. [c.9]

    Электрохимический метод производства марганцовокислого калия анодным окислением марганцовистокислого калия К2МПО4 в настоящее время целиком вытеснил химический способ получения марганцовокислого калия, основанный на окислении марганцовистокислого калия хлором или углекислотой по уравнениям [c.399]


Смотреть страницы где упоминается термин Хлор, производство электрохимические методы: [c.12]    [c.11]    [c.250]   
Общая химическая технология неорганических веществ 1964 (1964) -- [ c.325 , c.336 , c.351 ]

Общая химическая технология неорганических веществ 1965 (1965) -- [ c.325 , c.326 , c.351 ]




ПОИСК





Смотрите так же термины и статьи:

Ионообменный метод получения каустической соды и хлора Стадии производства, общие для обоих электрохимических методов получения хлора и каустика

Методы электрохимические

Производство методы

Хлориты электрохимическими методам

Электрохимические методы производства



© 2025 chem21.info Реклама на сайте