Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анионы взаимодействие с гидроксидами

Рис. 1.2. Схема взаимодействия гидроксидов с катионами и анионами. Рис. 1.2. <a href="/info/171156">Схема взаимодействия</a> гидроксидов с катионами и анионами.

    Амфотерные гидроксиды способны диссоциировать в водных растворах как по типу кислот (с образованием катионов водорода), так и по типу оснований (с образованием гидроксильных анионов) они могут быть и донорами, и акцепторами протонов. Поэтому амфотерные гидроксиды образуют соли при взаимодействии как с кислотами, так и с основаниями. При взаимодействии с кислотами амфотерные гидроксиды проявляют свойства оснований, а при взаимодействии с основаниями — свойства кислот  [c.34]

    В объемном анализе применяется также взаимодействие сильной кислоты и слабого основания. Слабыми основаниями являются аммиак, амины, анионы слабых кислот, входящие в состав солей. Анионы сильных кислот в водных растворах практически не проявляют основных свойств. Малодиссоциированные гидроксиды металлов тоже являются слабыми основаниями, но они не имеют значения в объемном анализе в силу их нерастворимости в воде. В общем виде реакция взаимодействия слабого основания (В) с сильной кислотой выглядит следующим образом  [c.97]

    Написать уравнения реакций получения гидроксида алюминия и его взаимодействия с хлороводородной кислотой и едким натром, учитывая, что в щелочной среде образуется комплексный анион [А1(0Н)б1 . Указать названия полученных соединений алюминия. Написать схему равновесия диссоциации гидроксида алюминия. Как изменяется концентрация ионов АР+ и [А1(0Н)в1 при добавлении кислоты При добавлении щелочи  [c.188]

    Взаимодействие катионов и анионов с гидроксидами [c.9]

    В две пробирки вносят по 1-2 мл раствора сульфата алюминия и по каплям добавляют раствор едкого натра до образования осадка гидроксида алюминия. К полученному осадку добавляют растворы концентрации 2 мопь/л в одну - соляной кислоты, в другую - едкого натра до растворения осадка. Написать уравнения реакций получения гидроксида алюминия и его растворения в кислоте и щелочи, учитывая, что при взаимодействии гидроксида алюминия со щелочью образуется комплексный анион [АКОН) ].  [c.127]

    Здесь дана упрощенная схема взаимодействия гидроксида меди (II) с солью винной кислоты продукт реакции, дающий темно-синий раствор, содержит комплексный анион с атомом меди (И) во внутренней сфере (медно-винный комплекс). [c.232]


    В многоядерных комплексах молекулы воды и ОН-группы могут замещаться на имеющиеся в растворе анионы. Все это объясняет причину сложного состава соединений, образующихся при химических реакциях в водных растворах. Так, при взаимодействии оксидов или гидроксидов с кислотами образуются не средние соли, а еоот- [c.503]

    Таким образом, в зависимости от того, с более сильным основанием или с более сильной кислотой взаимодействует гидроксид алюминия, алюминий входит в продукт реакции нейтрализации в виде аниона или катиона. [c.253]

    Запись данных опыта. Отметить наблюдаемые явления. Сделать вывод о сравнительных свойствах гидроксидов галлия и индия. Написать уравнения протекающих реакций а) образование гидроксидов Оа(ОН)з и 1п(0Н)з б) взаимодействия гидроксидов с кислотой и щелочью, учитывая образование в щелочной среде комплексного аниона (Оа(ОН)4] и соответствующей соли. Указать названия всех полученных соединений. [c.241]

    Фактически вся химия Au(III) является химией комплексных соединений. Лигандами здесь могут выступать даже нитратные и сульфатные анионы. Так, при взаимодействии гидроксида золота [c.406]

    Сокращенная ионная форма наиболее наглядна. Она показывает, какой ион (катион или анион) взаимодействует с водой, какой слабый электролит образуется и какова реакция среды. Например, гидролиз цианида калия заключается во взаимодействии цианид-иона N с молекулой воды, в результате чего в растворе появляются молекулы слабой циановодородной кислоты и гидроксид-ионы ОН, сообщающие раствору щелочную реакцию  [c.97]

    В многоядерных комплексах молекулы воды и ОН-группы могут замещгться на имеющиеся в растворе анионы. Все это объясняет причигу сложного состава соединений, образующихся при химических реакциях в водных растворах. Так, при взаимодействии оксидов или гидроксидов с кислотами образуются не средние соли, а соответствующие оксо- и гидроксопроизводиые, например типа ЭОХ (где X =С1-, Вг-, 1-, N0 , У 2 50Г)  [c.535]

    А1(ОН)з практически нерастворим в воде и является типичным амфотерным гидроксидом. Взаимодействуя с кислотами, он образует соли, в которых алюминий является катионным компонентом. Под действием щелочей образуются алюминаты — комплексные соединения, в которых алюминий входит в состав аниона  [c.255]

    А1(0Н)з — амфотерный гидроксид. При взаимодействии с кислотами образует соли, содержащие катионы алюминия при взаимодействии со щелочами образует соли, в которых алюминий входит в состав аниона. [c.212]

    А1(0Н)з — типичный амфотерный гидроксид. При взаимодействии с кислотами образует соли, содержащие катионы алюминия ири взаимодействии с растворами щелочей (взятыми в избытке) образует алюминаты, т. е. соли, в которых алюминий входит в состав аниона. Например  [c.252]

    При отсутствии алкилирующего агента дихлорметан, являющийся растворителем, начинает взаимодействовать с фенолят-ным анионом, образуя в качестве побочного продукта диарил-оксиметан [29]. Небольшие изменения в условиях проведения этой реакции позволяют получать этот продукт с очень высоким выходом [234]. С этой целью твердый порошкообразный гидроксид калия и фенол перемешивают в метиленхлориде в присутствии 5—10 мол.% аликвата 336 в течение 8—16 ч при комнатной температуре. При использовании водного раствора гидроксида щелочного металла или менее липофильного катализатора— ТЭБА скорость реакции резко снижается. Метиловые эфиры катехинов получают, вводя в реакцию метиленбромид, водный гидроксид натрия и адоген 464 в качестве ката- [c.155]

    Запись данных опыта. Сделать вывод о свойствах гидроксида бериллия и написать схему равновесия его диссоциации. Написать уравнения реакций получения гидроксида бериллия и его взаимодействия с кислотой и щелочью, учитывая, что в щелочной среде образуется комплексный анион [Ве(0Н)4] — тетрагидро-ксобериллат. [c.255]

    Соли кислородсодержащих кислот. Выше было отмечено, что тройные и более сложные соединения можно рассматривать как продукт взаимодействия соответствующих бинарных. Так если взаимодействуют (в действительности или мысленно) оксиды, один из которых — оксид водорода (вода), то образуются гидроксиды. Если взаимодействуют основные и кислотные оксиды, то образуются соли кислородсодержащих кислот. Таким образом, гидроксиды (основания и кислоты) являются своеобразным частным случаем солей. При этом в результате электролитической диссоциации (например, в водных растворах) единственным типом катионов являются катионы Н3О в случае кислот и единственным типом анионов — ОН" в случае оснований. Если же в растворе присутствуют какие-либо иные катионы или анионы, то объект является солью. Так, при диссоциации [c.289]

    АММОНИЯ СОЕДИНЕНИЯ — вещества ионного характера, содержащие положительно заряженный атом азота, связанный четырьмя ковалентными связями с органическими радикалами или с атомами, и одной ионной связью с анионом. Простейшим примером неорганических А. с. могут служить гидроксид аммония МН ОН , а также соли аммония, например NH 1 , образующиеся нри взаимодействии ЫНд или его водных растворов с соответствующими кислотами. К органическим А. с. относятся продукты замещения атомов водорода при атоме азота в КН ОН и солях аммония органическими радикалами. В зависимости от количества органических радикалов различают первичные NH+ -, вторичные третич1]ые [c.24]


    Обычные неорганические соли натрия и калия не растворимы в неполярных органических растворителях. Это верно и для солей неорганических анионов с небольщими органическими катионами, например для тетраметиламмония. Подобные аммонийные соли часто способны, однако, растворяться в ди-хлорметане и хлороформе. Более того, использование относительно больщих органических анионов может обеспечивать растворимость солей щелочных металлов в таких растворителях, как бензол. Например, диэтил-н-бутилмалонат натрия дает 0,14 М раствор в бензоле, для которого понижение точки замерзания неизмеримо мало, что говорит о высокой степени ассоциации. Подобным образом большие ониевые катионы (например, тетра-м-гексиламмония) делают растворимыми соли даже небольших органофобных анионов (например, гидроксид-ионов) в углеводородах. Ионофоры, т. е. молекулы, состоящие из ионов в кристаллической решетке, диссоциируют (полностью или частично) на сольватированные катионы и анионы в растворителях с высокими диэлектрическими проницаемостями. Подобные растворы в воде являются хорошими проводниками. В менее полярных растворителях даже сильные электролиты могут растворяться с образованием растворов с низкой электропроводностью это означает, что только часть растворенной соли диссоциирована на свободные ионы. Чтобы объяснить такое поведение растворов, Бьеррум выдвинул в 1926 г. гипотезу ионных пар. Впоследствии его гипотеза была усовершенствована Фуоссом [38] и рядом других исследователей. Ионные пары представляют собой ассоциаты противоположно заряженных ионов и являются нейтральными частицами. Стабильность ионных пар обеспечивается в основном кулоновскими силами, но иногда этому способствует и сильное взаимодействие с ок- [c.16]

    Утверждалось [74], что анион-радикал, возникающий при взаимодействии гидроксид-иона с о- и га-динитробензолами в ДМСО с образованием соответствующих о- и п-нитрофенолов, может в действительности быть интермедиатом в реакции замещения. Механизм, предложенный для объяснения спектро-N0, N0, Т [c.277]

    Гидроксид алюминия — ам-фотериое вещество, способное к адсорбции и обмену ионов из раствора. Активные группы в этом обмене — гидроксилы н протоны гидроксильных групп. Относительная сила и способ- ность к обмену с другими ионами зависит от рН среды, в которой образовался осадок гидроксида, и от pH раствора, в котором происходит взаимодействие с посторонними ионами. В щелочной среде (pH 9) преобладает адсорбция катионов, в кислой предпочтительно адсорбируются анионы поэтому при осаждении из раствора алюмината натрия, осадок, полученный в щелочной среде, содержит примесь натрия, а осажденный в кислой среде — хемосорбирует анион кислоты, взятой для осаждения. В изоэлектрической точке (точка нулевого заряда, pH л 9,0), адсорбция катионов и анионов. эквивалентна и осадок наименее загрязнен примесями. [c.70]

    Очень часто наблюдается аналогия между химическими реакциями в ионизирующихся растворителях и в водных растворах. Так, многие соединения, имеющие в своем составе анионы растворителя, проявляют амфотерные свойства, т. е. как и слабоосновные гидроксиды в водных растворах, по-разному взаимодействуют с кислотами и основаниями. Так, выпадающий при добавлении в жидкий аммиак раствора амида калия осадок А1(МН2)з растворяется в избытке в результате комплексообразования [c.443]

    Запись данных опыта. Отметить наблюдае.мые явления во всех случаях-и сделать вывод о свойствах гидроксидов сурьмы и висмута. Написать в молекулярном и ионном виде уравнения реакций получения указанных гидроксидов и их взаимодействия с кислотой и щелочью, учитывая, что в избытке щелочи гидроксид сурьмы образует комплексный анион [Sb(OH)( ] " — гексагидро-ксостибат (1Г1). В какой среде наиболее устойчив этот анион В какой среде устойчив, катион Sb  [c.159]

    Слабые основания и слабые кислоты характеризуются низкими значениями степеней диссоциации, т. е. катионы слабых оснований прочно связывают гндроксид-ионы, а анионы слабых кислот — ионы водорода. Вследствие этого такие катионы и анионы в водном растворе будут притягивать к себе соответственно гидроксид-ионы и ионы водорода, которые всегда присутствуют в водном растворе в результате диссоциации молекул воды. Следовательно, в водных растворах солей, содержащих катионы или анионы, соответствующие слабому основанию или слабой кислоте, будут протекать реакции обменного взаимодействия между этими солями и водой. Такие реакции обменного взаимодействия ионов соли с ионами воды получили название гидролиза. [c.141]

    Наряду с комплексными оксо-анионами во многих случаях в водных растворах происходит образование комплексных ионов с гидроксо-лигандами (комплексные гидроксо-анионы). Такие гидроксокомплек-сат-ионы образуются, например, при растворении многих кислотных и амфотерных гидроксидов в водных растворах сильных оснований, т. е. при взаимодействии ковалентных гидроксидов с гидроксид-ионами  [c.66]

    Основными гидроксидами (основаниями) называются сложные вещества, диссоциирующие в растворах с образованием гидроксильных анионов. Так, к основным гидроксидам относятся ЫаОН, Са (ОН)г, ЫН40Н. Некоторые из них действительно могут быть получены непосредственно взаимодействием основного оксида с водой, например  [c.11]

    В две пробирки внесите по 3—4 каили раствора тетрахлорида олова ЗпСЦ и 2 н. раствора едкого натра до вьшадения осадка тетрагидроксида олова, К получершому осадку до полного его растворения добавьте в одну пробирку несколько капель соляной кислоты, в другую — едкого натра. Отметьте наблюдаемые явления и сделайте вывод о характере тетрагидроксида олова. Напишите уравнения реакций а) получения тетрагидроксида олова б) взаимодействия его с кислотой и щелочью в) схему равновесия диссоциации гидроксида, учитывая его амфотерный характер (тетра-гидроксид олова 5п(ОН)4 отщепляет в растворе молекулу воды и образует анион 5п0з — метастаннат-ион). [c.164]

    Сущность гидролиза сводится к химическому взаимодействию катионов или анионов соли с гидроксид-ио щми UH или ионами водорода Н+ из молекул воды. В результате этого взаимодействия образуется малодиссоциирую-щее соединение (слабый электролит) Химичс-ское равновесие процесса диссоциации воды смещается ви[)аво  [c.204]

    При взаимодействии с кислотами оксиды и гидроксиды щелочноземельных металлов легко образуют соответствующие соли, как правило, бесцветные. Из производных обычных миР1сральных кислот соли с анионами СГ, Вг , Г и N0.3 хорошо растворимы напротив, с анионами Р, ЗОГ, СО " и РО4 малорастворимы в воде. В противоположность ионам Са и Зг" ион Ва" ядовит. Многие соли рассматриваемых элементов находят разнообразное практическое и пoльзoвaииe.  [c.388]

    Увеличение растворимости малорастворимых соединений часто связано с образованием комплексов. Во многих случаях осаждаемые ионы способны взаимодействовать с различными лигандами, в результате чего они влияют на состояние равновесия между осадком и раствором. Так, ионы винной кислоты и других оксикислот мешают осаждению железа в виде гидроксида. Растворимость сульфата свинца в присутствии РЬ(1 0з)2 увеличивается в результате образования комплексных катионов [РЬ2504] +, [РЬз(504)2] " и др. При осаждении ионов серебра избытком хлороводородной кислоты или хлорида натрия часть осадка хлорида серебра переходит в раствор в виде комплексных анионов [А5С12] или [АдС1з]2-. Сдвиг состояния равновесия между осадком и раствором в сторону растворения осадка зависит от произведения растворимости осадка, устойчивости комплекса, концентрации лиганда, кислотности раствора и других условий. [c.175]

    Гидроксиды некоторых металлов являются амфолита ми, т. е. проявляют как основные, так и кислотные свойства. Поэтому они растворяются в избытке гидроксидов натрия или калия е образованием соответствующих анионов. К этим гидроксидам относятся гидрокеиды цинка, алюминия, олова (И) и (IV), сурь-мы(П1) и (V), хрома и частично меди (II). Уравнения реакций взаимодействия соответствующих ионов с гидроксидом натрия или калия записывают следующим образом, например с нонами алюминия  [c.545]


Смотреть страницы где упоминается термин Анионы взаимодействие с гидроксидами: [c.289]    [c.282]    [c.64]    [c.93]    [c.112]    [c.129]    [c.251]    [c.329]    [c.16]    [c.391]    [c.163]    [c.92]    [c.341]   
Химия промышленных сточных вод (1983) -- [ c.9 , c.12 ]




ПОИСК





Смотрите так же термины и статьи:

Гидроксиды

Гидроксиды анионами



© 2025 chem21.info Реклама на сайте