Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Источники получения жидких углеводородных газов

    Источники получения жидких углеводородных газов [c.218]

    Термический пиролиз углеводородов был первым промышленным процессом деструктивной переработки нефти. Сначала пиролиз служил для получения светильного газа. В период первой мировой войны во многих странах обратили внимание на пиролиз керосина, как на дополнительный источник производства толуола. Получение ароматических углеводородов, главным образом толуола, посредством пиролиза осуществлялось вплоть до 40-х годов и постепенно с развитием процессов риформинга утратило свое значение. В настоящее время пиролиз газообразного и жидкого углеводородного сырья является основным крупномасштабным способом производства низших олефинов и вновь получает распространение как серьезный источник ароматических углеводородов. [c.181]


    Важным фактором эффективности бензиновой модели нефтехимии следует считать комплексную переработку жидких продуктов пиролиза. Проблемы эффективности различной глубины переработки пироконденсата и тяжелой смолы пиролиза рассмотрены в монографии [ 5]- Здесь уместно лишь указать, что определенный экономический эффект производства бензола из пироконденсата по сравнению с производством его в нефтепереработке (риформинг, экстракция, деалкилирование толуола) составляет 6,3 млн. рублей. Это требует особой тщательности при организации перспективной структуры сырья пиролиза в нашей стране. Чрезмерная доля легкого углеводородного сырья резко снижает значение наиболее дешевого источника бензола — пиролиза нефтяного бензина, влечет за собой общее удорожание производства не только этого мономера, но и бутадиена. Например, удельные капиталовложения на получение бутадиена из фракции С4 пиролиза в 10—12 раз ниже аналогичного показателя, характеризующего процессы дегидрирования бутана. Сырьевая база пиролиза в связи с комплексностью процесса производства низших олефинов из нефтяного бензина требует оптимизации, поскольку использование самой дорогой нефти в химическом направлении может оказаться эффективнее применения этана и сжиженных газов, так как в последнем случае для получения ароматических углеводородов и мономеров синтетического каучука требуются дополнительные процессы. [c.370]

    Термический и каталитический крекинг. Крекинг жидких нефтепродуктов является основным методом современной переработки нефти в авиационные и другие виды топлива этот лее метод служит основным источником получения искусственных углеводородных газов. Сущность крекинга заключается в нагревании нефтепродуктов до температуры 450—650° С вследствие чего высокомолекулярные углеводороды исходного сырья разлагаются, а часть образовавшихся при этом осколков молекул, взаимодействуя между собой, образуют другие углеводороды. Процесс крекинга осуществляется как при атмосферном, так и при повышенном давлении (до 70 атм или 6,9 МПа), как в присутствии катализатора, так и без него. Крекинг нефтепродуктов в присутствии катализаторов получил название каталитического крекинга в отличие от термического крекинга, осуществляемого без катализатора. [c.195]


    Крекинг жидких нефтепродуктов является главным направлением современной переработки нефти в авиационные и другие виды топлива этот же метод служит основным источником получения искусственных углеводородных газов. [c.253]

    Следовательно, основными источниками для получения сжиженных углеводородных газов (пропан, бутан) должны служить попутные газы, газы газоконденсатных месторождений, искусственные нефтяные газы и газы деструктивной гидрогенизации твердого и жидкого топлива. Однако следует указать, что газы термической и термокаталитической переработки нефти и нефтепродуктов как содержащие значительное количество реакционно-способных непредельных углеводородов прежде всего должны подвергаться соответствующей переработке для их фракционирования с последующим использованием в различных химических синтезах. [c.173]

    Каталитический крекинг служит в США главным источником получения пропилена. Однако в производстве других нефтехимических полупродуктов процессы каталитического крекинга и гидрокрекинга находят ограниченное применение, исключая получение исходного сырья для пиролиза. Количество олефинов, извлекаемое из нефтезаводских газов, недостаточно для удовлетворения нужд химической промышленности, вследствие чего паровой пиролиз приобрел самостоятельное значение как метод получения олефиновых углеводородов. Полагают, что в настоящее время общий годовой объем мирового потребления этилена (без социалистических стран) составляет 22 млн. т, а пропилена — 11 млн. т , Пиролизом жидкого углеводородного сырья получают также значительные количества других полупродуктов, таких, как бутадиен, бутилены, изопрен и ароматические углеводороды. Современные установки пиролиза нафты имеют годовую мощность 250—500 тыс. т этилена и потребляют свыше 1 млн. т сырья в год. [c.50]

    Технический водород может быть получен не только конверсией углеводородных газов с водяным паром, но и взаимодействием углеводородных газов с кислородом. Однако на практике последний метод получения технического водорода обычно не применяется. Указанное находится в основном в связи с тем, что расход кислорода при существующих ценах на электроэнергию ложится тяжелым бременем на стоимость технического водорода. Источники же дешевого побочного кислорода на нефтеперерабатывающих заводах или па заводах искусственного жидкого топлива (где вырабатывается и потребляется основное количество технического водорода), как правило, отсутствуют. [c.187]

    Метановая фракция, получаемая при разделении углеводородных газов, как указано выше, может служить источником ацетилена. Кроме метана для этой цели можно пользоваться жидкими смесями высших углеводородов, например, нефтью или продуктами ее переработки. В настоящее время известны следующие способы получения ацетилена из метана пирогенетический, дуговой, разложение в электрическом разряде и основанный на частичном сжигании. Однако до сих пор основное значение все же сохраняет старый способ производства ацетилена из карбида кальция. Обычно эффективность новых способов сравнивают с эффективностью карбидного способа. Поэтому разбор вопроса о производстве ацетилена целесообразно начинать с рассмотрения карбидного способа. [c.77]

    Источниками для получения смеси окиси углерода и водорода, так называемого синтез-газа, служат углеводородные газы (природный и попутный, коксовый, синтез-газ ацетиленовых установок и пр.), а также водяной газ, получаемый газификацией угля и кокса жидкое топливо и др. [c.50]

    Выходящая из сепараторов нефть, в зависимо сти от режима еепарации, также содержит значительное количество раство-веннЫ Х в ней тяжелых углеводородных газов. Газы, выделяемые из нефти, после сепараторов содержат около 30% пропала, 30—35% бутана и около 30% газового бензина. Эти газы, т. е. газы, полученные в результате стабилизации нефти, являются богатыми источниками для добычи жидких газов, которые бы чно и извлекаются на газобензиновых заводах. [c.219]

    Источники сырья и способы получения этилена в США и странах Западной Европы различны. В США наиболее экономичным сырьем являются этан и пропан жирных природных и нефтяных газов, поставляемые газобензиновыми заводами. Из этого сырья вырабатывают около 85% всего этилена . В странах Западной Европы и Японии, не располагающих собственным газообразным углеводородным сырьем и со слабее, чем в США, развитыми вторичными методами переработки нефти, основным сырьем для получения этилена являются жидкие углеводороды от прямогонного бензина до сырой нефти. [c.118]

    Жидкие углеводородные газы. Основными источниками получения- жидких углеводородных газов являются нефтяные газы нефтеперерабатывающих заводов, естественные нефтяные газы, добываемые попутно с нефтью, и природные газы. Сжиженные газы состоят, преимущественно, из пропана, нормального бутана и иэобутана. [c.57]


    Пиролиз, его применяют с целью получения углеводородных газов, состоящих примерно на 40% из непредельных углеводородов, широко используемых как в промышленности нефтесинтеза, так и основного органического синтеза. Пиролиз также является основным источником получения жидких ароматических углеводородов — бензола, толуола, ксилолов и др. [c.28]

    На установках первого типа, где водород вырабатывается обычно в больших количествах, источниками получения его являются или естественные ресурсы (вода, природные углеводородные газы, а также попутные газы нефтяных месторождений), или о т X о д.я-щ и е п р од укты переработки твердых и жидких топлив (коксовый газ,, газы нефтепереработки, нефтяные остатки, газы гидрирования и др.). [c.41]

    Синтез каучуков получил промышленное значение лишь после того, как были разработаны простые и эффективные способы получения мономеров из распространенного, доступного и дешевого сырья. В. разных случаях для производства мономеров пользуются разнообразными веществами ацетиленом, этиловым спиртом, предельными и непредельными углеводородами, ацетоном, альдегидами и т. д. Однако такое простое перечисление, сколько бы его ни продолжать, не определяет еще характера основного сырья для синтеза каучуков. Дело в том, что каждое из упомянутых выше веществ можно получить несколькими способами и из разных источников. Ацетилен, например, можно получить из карбида кальция, переработкой естественного газа, переработкой жидких углеводородных смесей разного происхождения и т. д. Этиловый спирт получают брожением крахмалистых и сахаросодержащих сельскохозяйственных продуктов, гидролизом древесины, переработкой отбросных щелоков сульфитно-целлюлозных заводов, а также синуетичеоким путем из этилена, ацетилена (через уксусный альдегид) и этана. То же можно оказать и в отношении других веществ. Но если рассмотреть все источники получения этих веществ, то окажется, что их всего пять нефть, естественный газ, каменный уголь, древесина и сельскохозяйственные продукты. Эти материалы и являются в настоящее время основным сырьем для производства синтетических каучуков. Кроме них применяется, но уже в подчиненных количествах, и сырье минерального характера, подчас довольно разнообразное. [c.43]

    Сырьевая база азотной промышленности (обычно под этим подразумевают источники получения водорода) за последние 10—20 лет претерпела коренные изменения. Твердое топливо утратило свое доминируюш ее положение, и в настояш ее время основным сырьем в производстве связанного азота как в СССР, так и за рубежом являются углеводородные газы (природный, попутный, коксовый, газы переработки нефти) и жидкие нефтепродукты (нафта, бензин, мазут). [c.5]

    Источником промышленного получения этилена в настоящее время является пиролиз различного углеводородного сырья этана, пропана, бутан-пентановых и бензиновых фракций. Пиролиз осуществляется в трубчатых печах при 780—840 °С и времени контакта 0,3—1 с. Продукт пиролиза делят на газ пиролиза (водород и углеводороды С1—С4) и жидкие продукты (углеводороды Сз и более тяжелые). Выход газа при пиролизе на этилен приближенно составляет при пиролизе этана 90% (в том числе 70% этилена), при пиролизе бензиновых фракций 70% (из них 25—30 % этилена). Поток продуктов после пиролизной печи подвергается закалке водой, первичному фракционированию и охлаждению до 40 °С. Газы после этого компримируют и направляют на газоразделительную установку, где методами низкотемпературной конденсации и фракционирования газ разделяют на индивидуальные углеводороды и целевые фракции. На установке выделяют таким образом этилен с концентрацией С2Н4 99% и более. Основной примесью является ацетилен. К этилену, идущему на производство спирта, пока не предъявляется жестких требований по содержанию ацетилена, и поэтому его не очищают от ацетилена. Примерно 20% всего этилена, получаемого методом пиролиза, расходуется в производстве этилового спирта. [c.16]


Смотреть страницы где упоминается термин Источники получения жидких углеводородных газов: [c.8]    [c.220]    [c.171]   
Смотреть главы в:

Естественные и искусственные газы -> Источники получения жидких углеводородных газов




ПОИСК





Смотрите так же термины и статьи:

Получение газа

Углеводородный тип газов

газах жидких



© 2025 chem21.info Реклама на сайте