Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пар также Пары и Водяной

    Давление водяных паров, а также паров большинства других жидкостей с ростом температуры увеличивается, поэтому допустимая вакуумметрическая высота всасывания Яд.в насоса с повы- [c.138]

    Углеводородный природный газ, добы- ф ОчиСТКа и ОСушка ваемый из газовых месторождений, со- природного газа стоит главным образом из метана с не-большой примесью более тяжелых углеводородов. Кроме того, в нем присутствуют азот, углекислый газ, сероводород, гелий и аргон. Любой природный газ содержит также пары воды. Газовая залежь в толще горных пород окружена водой и находится в контакте с влажными глинами, песками и другими минералами. Поэтому газ в залежи насыщен водяными парами. [c.287]


    Нагретый в коксонагревателе 5 кокс возвращается по изогнутому трубопроводу 7 (пневмотранспорт) в реактор 11. Транспортирующей средой также является водяной пар. Поскольку количество сжигаемого кокса меньше вновь образующегося, то избыток его в виде фракции более крупных частиц непрерывно выводится из системы через сепаратор-холодильник 3. Менее крупные частицы возвращаются из сепаратора-холодильника в коксонагреватель 5. Отделение мелких частиц кокса от крупных обеспечивается с помощью водяного пара, подаваемого в низ сепаратора. Выходящий с низа сепаратора [c.32]

    Мазут нагревают в теплообменниках и печи до 390 °С и подают в вакуумную колонну. В низ колонны вводят также перегретый водяной пар. Вакуум создается трехступенчатыми пароэжекторными вакуум-насосами используемые на установке конденсаторы — поверхностного типа. Остаточное давление наверху колонны составляет 5,4 кПа, температура — 100—120 °С. В качестве боковых погонов из колонны выводят фракции до 350, 350—500 °С и затемненный продукт. Гудрон с температурой 360 °С откачивается из нижней части колонны центробежным насосом и после охлаждения направляется в сырьевую емкость блока окисления (рис. 19). [c.38]

    На некоторых заводах синтетического каучука дивинил получают путем каталитического дегидрирования бутиленов. Процесс дегидрирования производится в реакторах при температуре 580—630 °С. Поступающие со склада сжиженные бутилены (рис. 7) испаряются в испарителе /, перегреваются в перегревателе 2, нагреваются в печи (на рисунке не показано) и подаются в реактор 3. В печи также перегревается водяной пар, который смешивается с бутиленами на входе в реактор 3. Контактный газ, который получается в процессе дегидрирования, проходит через котел-утилизатор 4, где охлаждается до 250—280 °С, и направляется на дальнейшее охлаждение, конденсацию и разделение. [c.55]

    Принципиальная технологическая схема процесса каталитического расщепления ДМД с получением изопрена представлена на рис. 5. Пары ДМД смешиваются с водяным паром и поступают в контактный аппарат 2, куда из пароперегревательной печи 1 подается также пар с температурой 700 °С. [c.705]

    Для таких трубопроводов должна быть предусмотрена возможность продувки их инертным газом или острым водяным паром. Подвод инертного газа (водяного пара) к технологическим трубопроводам должен производиться с помощью съемных участков трубопроводов или гибких шлангов с установкой запорной арматуры с обеих сторон съемного участка. По. окон нии продувки съемные участки (шланги) должны быть сняты, а на запорной арматуре установлены заглушки. Другие способы подсоединения к трубопроводам линий инертного газа (а также паровых, водяных и других линий) запрещается. [c.273]


    Если в дистилляте, отводимом с верха ректификационной колонны, присутствуют водяной пар и другие летучие компоненты, практически отсутствующие в жидкой фазе, то для них можно принимать Крг = °°- В этом случае в расчетное уравнение для выражения состава дистиллята вводят также концентрации водяного пара и других компонентов. Влияние водяного пара на температуру верха колонны можно учитывать также, используя в расчетном уравнении парциальное давление углеводородов, т, е.  [c.54]

    Сырье — смесь газов, содержащая предельные углеводороды или индивидуальные углеводородные фракции, например этан,— поступает на распределительную гребенку, куда подается также перегретый водяной пар. [c.11]

    Для предотвращения догорания оксида углерода на выходе из регенератора предусмотрен впрыск конденсата через форсунки в сепарационную зону и в сборную камеру, а также ввод водяного пара в верхнюю часть сепарационной зоны и в циклоны первой ступени. [c.388]

    Исходной величиной может служить также скорость водяного пара W2 в зазоре между корпусом конденсатора и полкой (без учета конденсирующихся паров). [c.633]

    В промышленности водород получают из природных и попутных газов, продуктов газификации топлива, а также восстановлением водяного пара раскаленным углем в основе производства лежат реакции [c.412]

    Пары ДМД смещиваются с водяным паром и поступают в контактный аппарат 2, куда из пароперегревательной печи I подается также пар с температурой 700 °С. Процесс контактирования длится 3 ч. После завершения этого цикла реактор продувают водяным паром и начинают цикл окислительной регенерации ката- [c.372]

    Наиболее распространенный специальный способ производства водорода на нефтеперерабатывающих заводах — каталитическая конверсия углеводородного сырья с водяным паром. Он состоит из следующих основных стадий конверсии углеводородного сырья (метана, сухого газа) с водяным паром при 900—1100° С и последующей конверсии образовавшейся окиси углерода также с водяным паром в интервале температур 250—450° С. Для каждой из этих стадий применяют специальные катализаторы, различающиеся по химическому составу, физико-химическим свойствам и способам получения. [c.87]

    При исследовании нефтей и различных их фракций и нефтепродуктов широко применяются различные методы перегонки. Производят перегонку под атмосферным давлением и под вакуумом (для высокомолекулярных углеводородов), а также с водяным паром. Применяют еще азеотропную и молекулярную перегонку. Первая из них служит для разделения азеотропов, т. е. веществ, которые при обычной перегонке не разделяются. Для того чтобы разделение произошло, добавляют некоторые специально подобранные вещества. Молекулярная перегонка отличается тем, что производится в глубоком вакууме. В качестве метода разделения смесей применяется также кристаллизация. [c.231]

    Устройства для сепарации пара и рециркуляции воды. Паро-водяная смесь, поступающая из трубного пучка, должна быть отсепарирована, и вода должна быть вновь подана в зону испарения. В приведенной на рис. 12.6 конструкции это обеспечивается установкой барабана над серединой U-образного корпуса парогенератора, а также размещением подъемных труб с определенным шагом вдоль всей длины парогенератора. Опускные трубы из барабана возвращают воду в нижнюю часть парогенератора. Установка рециркуляционных насосов при наличии ограничений по высоте позволяет применить более компактные трубные пучки, т. е. изготовить менее габаритные парогенераторы, чем в случае использования агрегатов, рассчитанных только на естественную циркуляцию. Однако даже если и используются рециркуляционные насосы, то все же желательно спроектировать агрегат в целом таким образом, чтобы в нем осуществлялась хорошая естественная циркуляция для обеспечения эксплуатации с частичной нагрузкой в случае выхода из строя циркуляционных насосов. Следовательно, размеры проходных сечений должны быть относительно велики. [c.238]

    Подобная диаграмма составлена также для водяного пара (рис. 1 / -15). Коэффициент излучения здесь выражен произведением двух функций  [c.303]

    В отделений регенерации растворителей экстрактный раствор насосом Я-5 через теплообменники Т-2 и Т-З направляется в колонну К-1 на отпарку пропана. С низа колонны К-1 экстрактный раствор передается в колонну К-2, куда поступает водяной пар. В колоннах К-2, К-3, К-4 происходит постепенная отпарка феноло-крезольного растворителя. С низа колонны К-2 экстрактный раствор перетекает в колонну К-3, с низа колонны К-3 перетекает в колонну К-4. В колонну К-3 также подается водяной пар, в колонне К-4 поддерживается вакуум. Экстракт, освобожденный от растворителя с низа колонны К-4 насосом Н-16 через теплообменник Т-2 отводится с установки. [c.346]


    Применение боксита в качестве катализатора, а также перегретого водяного пара приводит к высокому содержанию олефинов в крекинг-газах, [c.29]

    Н. А. Бутков предложил способ некоторого уменьшения коксообразования и повышения выхода ароматических даже при пиролизе тяжелых и сильно ароматизированных фракций. Способ заключается в применении рециркуляции пиролизного газа с вводом его в зону реакции. Некоторое снижение коксообразования достигается также вводом водяного пара в зону реакции. [c.198]

    Если газы состоят из атомов, то вполне можно допустить, что жидкости и твердые вещества также состоят из атомов. Например, как испаряется вода В процессе испарения исчезают одна за другой мельчайшие частички воды. Совсем нетрудно представить себе, что вода превращается в пар атом за атомом. Если воду нагревают, она кипит, и при этом образуется пар. Водяной пар имеет физические свойства воздухоподобного вещества, и, следовательно, вполне естественно предположить, что он состоит из атомов. Но если вода состоит из атомов, будучи в газообразной форме, то почему она не может состоять из атомов, находясь в жидком или твер- [c.33]

    Полная ковденсацця бензиновых фракций (чистых, а также содержащих водяные пары) при отсутствии неконденсирующихся газов Конденсация и частичное охлаждение бензиновых фракций (скорость жидкости 0,2—0,4 м/с) [c.104]

    Коксовый теплоноситель выводят через нижнюю отпарную секцию реактора, оборудованную 7-10 рядами отбойных элементов, обеспечивающих равномерное рас — преде. ение и улучшающих контактирование потоков водяного пара, подаваемого на отпарчу, и выводимого кокса. Водяной пар одновременно выполняет функцию псев — доожижающего агента. Транспорт кокса из реактора в коксонагреватель и обратно осуществляют также подачей водяного пара в соответствующие коксопроводы. [c.77]

    Для нлажпых газов в формуле 22 учитывают также давление водяного пара (Ь)  [c.46]

    Система, включающая охлаждающие змеевики регенератора, барабан, соответствующие паро-водяные коммуникации и контрольно-измерительные приборы, а также насосы для циркуляции горячей воды и питания барабана подогретой водой, Воданоа иредставляет собой паровой " Р котел-утилизахор. [c.123]

    Пары масляных дистиллятов и водяной пар направлялись через дефлегматоры и конденсаторы-холодильники в емкости для масляных фракций приемно-сортировочного отделения. Несконденсировавшиеся пары, водяной пар и газообразные продукты распада поступали в барометрический конденсатор. Водяные и масляные пары конденсировались, а газообразные углеводороды отсасывались пароструйными эжекторами. В приемно-сортировочном отделении масляные дистилляты компаундировались (смешивались) для получения товарных масляных дистиллятов заданной вязкости. Очистка масляных дистиллятов от продуктов распада, смол и нафтеновых кислот проводилась также серной кислотой и щелочью. [c.295]

    Содеркание воды в мазутах колеблется в пределах от 0,5-1,0 до 3-5 а в отдельгшх случаях и выше ( обводнённые мазуты). Меньшее количество воды содержится в мазутах при их наливе на нефтеперерабатывающих заводах. Значительное обводнение мазутов происходгт в основном при их разогреве в период слива из железнодорожных гдютерн с применением острого водяного пара. В зависимости от температуры воздуха, температуры и вязкости мазута, а также параметров водяного пара обводненность мазута при сливных операциях, повышается до 4-10 Ещё большее содержание воды имеет место при разогреве высоковязких мазутов (10-12 % в летнее время и 15-20 % Е зимнее). [c.109]

    После планово-предупредительного ремонта колонну проверяют путем наружного осмотра. Убедившись в том, что все люки и линии, связанные с колонной, герметично закрыты, приступают к опрессовке ее водяным паром. Водяной пар вводят в низ колонны, а воздух выводят через имеющийся наверху воздушник. Образующийся конденсат выводится через спускную линию. После нагрева колонны и появления пара через воздушник спускную задвижку на этой линии закрывают и в колонне создается давление, на 0,2 — 0,3 ати превышающее рабочее. Выявленные дефекты устраняются после спуска давления. Отпарные колонны спрессовываются также водяным паром, причем воздух выводят в колонну через шлемовую трубу, а образующийся конденсат — через спускную линию. Реактор и шлемовую трубу оорессовывагот перегретым водяным паром. [c.139]

    Наконец, при дегидрироваиии олефинов за счет образующегося водорода получается небольшое количество парафинов, которые крекируются легче, чем соответствующие олефины. Часть углеводородов и кокса подвергается также конверсии водяным паром, иследствие чего в газе содержатся оксиды углерода. [c.486]

    Э-1 выводится экстрактный раствор. Оптимальные результаты достигаются при наличии градиента температур по высоте колонны. Для поддержания этого градиента часть экстрактного раствора охлаждается и возвращается в нижнюю часть экстрактора. При охлаждении из экстрактного раствора выделяется некоторое количество растворенных углеводородов, которые образуют орошение в нижней части экстрактора. Количество орошения увеличивают путем подачи в нижнюю часть Э-1 фенольной воды. Вода уменьшает растворимость углеводородов в феноле, вызывая выделение из экстрактного раствора еще некоторого количества растворенных углеводородов. Рафинатный раствор с верха Э-1 поступает в отстойную емкость Е-2, откуда подается в колонну К-2. Отстоявшийся в Е-2 фенол возвращается в верхнюю часть Э-1. В К-2 отгоняется основное количество фенола, содержащегося в рафйнатном растворе. С низа К-2 рафинатный раствор перетекает в отпарную колонну К-3, где остатки фенола отгоняются с водяным паром. С низа К-3 рафинат после охлаждения отводится с установки. Экстрактный раствор с низа Э-1 поступает в конденсатор смешения Кн-1, куда направляются также пары воды и фенола из отпарных колонн К-3 и К-6. Экстрактный раствор, поглотив в конденсаторе Кн-1 воду и фенол, поступает далее в сушильную колонну К-4, где от него отгоняется вода в виде азеотропной смеси с фенолом. Основная часть паров азеотропа конденсируется и направляется в сборник Е-3, а избыток паров, минуя конденсатор-холодильник, поступает в нижнюю часть К-1. Из К-4 экстрактный раствор направляется в колонну К-5, где отгоняется основная масса сухого фенола. С низа К-5 экстракт с небольшим количеством фенола поступает в отпарную колонну К-б, где остатки фенола отпариваются с водяным паром. Пары сухого фенола из К-2 и К-5 после конденсации поступают в сборник сухого фенола, откуда сухой фенол подается в верхнюю часть Э-1. Фенольная вода из Е-3 поступает на орошение сушильной колонны К-4, отпарных колонн К-3 и К-6, а также в нижнюю часть экстрактора Э-1. Острый пар, направляемый в колонны К-3 и К-6, вырабатывается из конденсата, накапливающегося в сборнике Е-1. Таким образом, вода на установке циркулирует в замкнутом цикле. [c.291]

    Охла/кдаемая газонаровая смесь, поднимаясь снпзу вверх, встречает на своем пути наряду с большим числом струй также и водяную завесу. Таким образом, в барометрическом конденсаторе создается большая поверхность контакта охлаждаемой смеси с водой. В результате газопаровая смесь охлаждается, а содержащиеся в ней водяные и нефтяные пары в большей части конденсируются. [c.542]

    Однократное испарение необходимо проводить при 100° С и общем давлении 200 мм рт. ст. Давления па])ов кислот при 100° С соответственно равпы 20, 14 и 8 мм рт. ст. Рассчитать количества в моль лгпдкостп р и пара а также количество водяного пара, необходимого для того, чтобы после однократного пспа1)епия получался пар, содержащий 95% воды. [c.61]

    На вакуумных мазутоперегонных установках перед вакуум-насосом (или эжектором) с целью уменьшения их размеров часто устанавливают конденсатор смешения, в котором конденсируются водяной пар, а также пары легких соляровых фракций, уносимых с водяным паром. Неконденсирующиеся газы отсасываются вакуум-насосом. Конденсатор находится под вакуумом, он устанавливается на достаточной высоте и снабжается барометрической трубой высотой не меиее 10,5—11,0 м, конец которой опущен в колодец с водой. За счет разности высот жидкости в барометрической трубе и в колодце преодолевается атмосферное давление, и конденсат с водой удаляется из конденсатора самотеком. [c.470]

    Нагретый в коксонагревателе 5 кокс возвращается по изогнутому трубопроводу 7 (пневмотранспорт) в реактор 11. Транспортирующей средой также является водяной пар. Поскольку количество сжигаемого кокса меньше вновь образующегося, то избыток его в виде фракции более крупных частиц непрерывно выводится из системы через сепаратор-холодильник 3. Менее крупные частицы возвращаются из сепаратора-холодильника в коксонагре-ватель 5. Отделение мелких частиц кокса от крупных обеспечивается с помощью водяного пара, подаваемого в низ сепаратора. Выходящий с низа сепаратора 3 кокс транспортируется водяным паром в приемник (на схеме не показан). Размеры частиц кокса, циркулирующего в реакторном блоке колеблются в пределах от 0,075 до 0,300 мм, а частиц балансового кокса — от 0,4 мм и выше. [c.32]


Смотреть страницы где упоминается термин Пар также Пары и Водяной: [c.116]    [c.163]    [c.163]    [c.240]    [c.106]    [c.49]    [c.257]    [c.735]    [c.312]    [c.277]    [c.335]    [c.49]    [c.106]   
Основные процессы и аппараты химической технологии Часть 2 Издание 2 (1938) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте