Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спирта этилового производства технологическая

Рис. V-4. Структурная схема (а) и материальный потоковый граф по общим массовым расходам технологических потоков (б) ХТС производства этилового спирта Рис. V-4. <a href="/info/24140">Структурная схема</a> (а) и <a href="/info/63564">материальный потоковый граф</a> по общим <a href="/info/21953">массовым расходам</a> <a href="/info/63546">технологических потоков</a> (б) ХТС производства этилового спирта

Рис. 8.7. Технологическая схема производства этилового спирта Рис. 8.7. <a href="/info/884754">Технологическая схема производства этилового</a> спирта
    На рис. 107 изображена технологическая схема производства этилцеллозольва с использованием 99% этилового спирта и окиси этилена прямого окисления. Шихта содержит 10—15%. окиси этилена, 85—90% этилового спирта и 0,02—0,1 г/л едкого натра. Готовят шихту в смесителе 3, куда одновременно подают спирт (смесь свежего и возвратного), окись этилена и 2—5%-ный раствор КаОН в этиловом спирте. [c.318]

    Спирта этилового производства технологическая линия 79—84 [c.702]

    ТЕХНОЛОГИЧЕСКАЯ ЛИНИЯ ПРОИЗВОДСТВА ЭТИЛОВОГО РЕКТИФИКАЦИОННОГО ПИЩЕВОГО СПИРТА [c.79]

    Технологическая линия производства этилового ректификационного пищевого спирта...................79 [c.708]

    Технологическая схема производства этилацетата представлена на рис. 7.11. Смесь уксусной кислоты, этилового спирта и серной кислоты из смесителя 1 непрерывно поступает на верхнюю тарелку колонны-эфиризатора 2, в куб которой подается острый пар. Образующийся этилацетат вместе с парами воды и спирта отгоняется с верха колонны, а жидкость по мере продвижения вниз по тарелкам обогащается водой. Благодаря отгонке летучего компонента и избытку спирта этернфикация протекает почти до полного превращения уксусной кислоты. [c.240]

    Типичными примерами ХТС с обратными технологическими связями являются ХТС синтеза аммиака, синтезов метилового спирта из оксида углерода и водорода, этилового спирта каталитической гидратации этилена в паровой фазе ХТС производства ацетальдегида гидратации ацетилена в жидкой фазе и др. [c.175]

    Существенный интерес представляет возможность использования, в качестве катализатора прямой гидратации этилена (а также и пропилена), серной кислоты, содержащей в качестве активирующей добавки сернокислое серебро, и некоторых других катализаторов. Такие катализаторы интересны тем, что они активны при низкой температуре (100° и несколько выше) и соответственно низких давлениях. По данным советских исследователей Е. К. Ремиз [83] и других, прямая гидратация, например, пропилена успешно протекает с применением в качестве катализатора 55% серной кислоты, содержащей примерно 3% сернокислого серебра. С таким катализатором даже при атмосферном давлении и температуре около 120° достигается 7—8%-ное превращение пропилена в изопропиловый спирт. По своему технологическому оформлению прямая гидратация с применением жидких катализаторов не отличается от схемы производства этилового спирта прямой гидратацией этилена. [c.84]


    В производствах довольно часто допускаются аварийные остановки, вызванные замерзанием воды или других жидкостей в аппаратуре и трубопроводах. Неполный слив воды после гидравлических испытаний и ошибки персонала при отогреве и последующем пуске оборудования в зимнее время могут привести к авариям. Так, на одном из предприятий при пуске после ремонта технологической установки для получения синтетического этилового спирта методом прямой гидратации этилена разорвался трубопровод, и этилен, находившийся в системе, был выброшен в помещение. [c.313]

    В книге на основе отечественного и зарубежного опыта дан анализ типичных аварий в различных химических производствах (аммиака, азотной кислоты, фосфора, этилового спирта, капролактама, перекисных и металлоорганических соединений). Приведены рекомендации по предотвращению аварий в указанных производствах, а также при проведении технологических процессов. [c.392]

    Правила и нормы техники безопасности и промышленной санитарии для проектирования, строительства и эксплуатации производств этилена, синтетического этилового спирта и синтетического каучука допускают прокладку технологических трубопроводов во взрывоопасных цехах в каналах и траншеях. [c.81]

    Пиролиз. Не менее важным узлом в технологическом комплексе бакинских заводов является пиролиз нефтяных фракций обеспечивающий производство этилового спирта сырьем с большим содержанием этилена, а также выработку ароматических углеводородов в виде пиробензола (в качестве высокосортных добавок к авиационным бензинам). [c.175]

    Типичными примерами ХТС с обратными технологическими связями являются ХТС синтеза аммиака, синтезов метилового спирта из окиси углерода и водорода, этилового спирта каталитической гидратацией этилена в паровой фазе ХТС производства ацет-альдегида гидратацией ацетилена в жидкой фазе ХТС производства уксусной кислоты окислением ацеталь-дегида, моторного топлива и т. д. [c.29]

    При получении пищевого этилового спирта брожением перегонка и ректификация являются завершающими этапами технологической схемы спиртового производства. Перегонка необходима для выделения спирта из бражки, а ректификация — для очистки спирта от примесей и доведения его до кондиции пищевого продукта. На практике оба эти процесса чаще всего технологически совмещены и осуществляются на непрерывно действующих брагоректификационных аппаратах. [c.3]

    Использование этана позволяет существенно уменьшить капитальные вложения в производство этилена и сократить сроки строительства химических и нефтехимических производств с законченным технологическим циклом (этилен — полиэтилен, этилен — этиловый спирт и т. д.), так как при пиролизе этана обеспечивается минимальный выход побочных продуктов, для утилизации которых требуются большие капитальные вложения (выход этилена из этана 70%, из бензина 27%, из вакуумного газойля 15%). [c.9]

    В 1948 г. была опубликована статья [7], в которой описывалась технологическая схема промышленного производства этилового спирта в США. [c.241]

    В Лесотехнической академии на созданной тогда кафедре гидролизных производств технологические работы по сульфитным щелокам возглавил А. В. Буевской. Его по праву следует считать одним из главных организаторов отечественного производства переработки сульфитных щелоков. В тот же активный творческий период большие исследования и практические разработки в области лигносульфонатов проводил в Москве Л. Я. Резник. На трех сульфитцеллюлозных предприятиях — Сокольском, Печаткинском (ныне Сухонском) и Балахнинском комбинатах началась выработка (тогда называвшихся сульфит-целлюлозными экстрактами) лигносульфонатов, применявшихся в качестве литейных крепителей и дубителей. В 1935 г. на Сясь-ском целлюлозно-бумажном комбинате (ЦБК) был пущен первый в стране цех по получению на сульфитном щелоке этилового спирта. В годы Отечественной войны на Соликамском ЦБК осуществили полную комплексную схему переработки сульфитного щелока с выработкой этилового спирта, белковых кормовых дрожжей и литейных концентратов. [c.200]

    Метанол, а также синтез-газ могут быть использованы для получения органических соединений практически любых классов. Некоторые из таких процессов уже технологически освоены. Для других реакций ведется поиск рентабельных катализаторов. Например, производство этилена из метанола пока нерентабельно селективность по углероду только 40%. Если же будет найден катализатор с селективностью хотя бы 60%, то процесс станет рентабельным. А вот получить из метанола этиловый спирт уже можно (на кобальтовом катализаторе)  [c.31]

    Создание на заводах СК здоровых и безопасных условий труда осуществляется разработкой технологических процессов и оборудования на основе Правил безопасности во взрывоопасных и взрывопожароопасных химических и нефтехимических производствах , утвержденных Госгортехнадзором СССР в 1974 г., а также Правил безопасности для производств синтетического каучука и синтетического этилового спирта , утвержденных Госгортехнадзором в 1981 г. [c.323]


    Выше уже отмечалось, что взрывоопасность химического производства зависит не только от характера отдельных технологических процессов, но и от особенностей их взаимосвязи и сложной технологической схеме и многих других общепроизводственных условий. Поэтому с учетом сложившейся отраслевой структуры промышленности анализ информации об авариях необходимо проводить по основным взрывоопасным химическим производствам — аммиака, хлора, ацетилена, азотной кислоты и ее солей, синтетического этилового спирта, синтетических каучуков, капролактама, полиэтилена, металлоорганических соединений, сероуглерода и других продуктов органического синтеза, а также по производствам фосфора и карбида кальция. Эта работа должна осуществляться соответствующими головными научно-исследовательскими и проектными организациями химической промышленности с целью выявления недостаточно надежных узлов и стадий в технологических схемах и разработки наиболее выгодных решений, обеспечивающих необходимую взрывобезопасность производств. [c.429]

    Рпс, 1. Технологическая схема производства этилового спирта методом прямой [c.570]

    Органические основания вытесняются из катионита при регенерации 5%-ным раствором NH3 в смеси растворителей, состоящей из 80% спирта (этилового или метилового) и 20% воды. При этом концентрация аминов в отработанных растворах может быть доведена приблизительно до 100 г/л. Из таких растворов аммиак и спнрт отгоняют и используют в следующей операции регенерации, а от водной фазы отделяют извлеченные из ионообменной смолы сырые органические продукты для дальнейшей их ректификации. Подогрев регенерирующего раствора (или колонны с катионитом, отключенной на регенерацию) до температуры 35—40° С значительно ускоряет процесс отмывки органических веществ из смолы. В качестве примера на рис. 33 приведена технологическая схема ионообменной очистки сточных вод производства хлоранилина от смесей анилина с хлора-нилином. Сточная вода принимается в сборник /, куда дозируется из мерников 2 соляная кислота для понижения pH до 4—4,5. Подкисленная сточная вода насосом 18 подается иа фильтр 4, где отделяется от выпавших при подкислении взвесей. Фильтрат принимается в бак 5 п со скоростью около 2 м /м ч поступает в блок последо-вательно включенных колонн 6, 7, 8 с общей длиной слоя загруженного в них катионита КУ-2 не менее 3 м. [c.153]

    Технологическая схема производства этилового спирта методом сернокислотной гидратации этилена изображена на рис. 7.3. Углеводородная фракция, содержащая 50—60% этилена. 40—48% этана и приблизительно 1% примесей, подается компрессором под давлением 2,5 МПа в нижнюю часть тарельчатого реактора-абсорбера /. орошаемого 96—98%-ной НгЗО . В реакторе поддерживается температура 65—75 С. Теплота абсорбции снимается трубчатыми водяными холодильниками, установленными на каждой тарелке. Для отделения от брызг жидкости газовый поток проходит через насадку, расположенную в верхней части реактора, и на выходе из реактора дросселируется до давления 0,7—0,8 МПа. Затем отходящий газ промывается водой и нейтрализуется 5—10%-ной щелочью в скрубберах 7. После осушки нейтрализованный газ, содержащий более 90% СаНб и 2—4% С2Н4, направляется на установку пиролиза. [c.223]

    Производилось исследование вентиляции в производстве синтетических спиртов — этилового п бутилового, изопропилбензола (по двум технологическим схемам), альфаметилстирола, дивинилметилстирольного каучука, синтетических жирных кислот, а также трихлорэтилена, монохлоруксусной кислоты и гербицида 2,4-Д, организованных на Уфимском химическом заводе. Кроме того, проводилось техническое испытание вентиляционных систем на вводимых в действие установках строящегося нефтеперерабатывающего завода. [c.143]

    Производство хлороформа из хлораля, который получают хлорированием этилового спирта, характеризуется сложной технологической схемой, большими затратами основных видов стрья и образованием побочных продуктов, которне до настоящего времени не утилизируются. [c.50]

    Инертные газы используются не только для флегма-тизации технологических процессов со взрывоопасными средами, их применение на химических заводах весьма широко, особенно азота. Во взрывоопасных производствах азот используется для продувки аппаратов и коммуникаций перед пуском, чтобы освободить систему от воздуха, а после остановки — для освобождения ее от взрывоопасных смесей. Азотом перёдавливают легковоспламеняющиеся жидкости, им заполняют свободные пространства емкостей с летучими или легкоокисляю-щимися жидкостями, например ацетальдегидом, этиловым эфиром, изопропиловым спиртом, защищают от искр статического электричества замкнутые простра нст-ва аппаратов. Содержание кислорода в азоте не должно превышать определенной нормы, иначе его защитное действие снижается или вовсе прекращается, например в производствах, где применяют или получают перекис-ные и металлоорганические соединения, азот не должен [c.144]

    Правила и нормы техники безопасности и промышленной санитарии для проектирования, строительства и эксплуатации производств этилена, синтетического этилового спирта и синтетического каучука Временные нормы и правила по технологическому проектированию факельных систем нефтеперерабатывающих и нефтехимических предприятий ВНиПФ 01—74 Правила технической эксплуатации и безопасности обслуживания газопылеулавливающих установок [c.555]

    Тремя основными источниками сырья для производства синтетических органических продуктов являются каменный уголь, нефть и растительные вещества. При достаточной изобретательности химика-органика любой из этих видов сырья может стать источником всех необходимых для химической промышленности исходных ве1цеств. Действительно, любое из органических соединений, описанных в справочнике Бейльштейна, можно синтезировать тем или иным путем, исходя из метана или в конечном счете из угля или кокса. Однако технолог должен принимать во внимание не только возможные, но также и наиболее экономичные методы. Выбор их зависит от новых технологических открытий и от наличия и стоимости сырых материалов, причем эти факторы могут непрерывно изменяться. Естественные ресурсы промышленных стран неодинаковы, но влияние этого на выбор того или иного метода производства может усиливаться или ослабляться в результате определенных государственных мероприятий. Примерами этому служат поддержка, которую в течение многих лет оказывало правительство Великобритании производству этилового спирта, и политика автаркии гитлеровской Германии, которая привела к широкому развитию химии ацетилена в этой стране. [c.11]

    Процесс производства диэтиламинометилтриэтоксисилана состоит из трех основных стадий этерификации хлорметилтрихлорсилана абсолютированным этиловым спиртом аминирования хлорметил-триэтоксисилана диэтиламином вакуумной разгонки продукта аминирования с выделением диэтиламинометилтриэтоксисилана. Принципиальная технологическая схема производства диэтиламинометил-триэтоксисилана приведена на рис. 49. [c.134]

    На нефтеперерабатывающих предприятиях лишь незначительное число технологических процессов периодические, например процессы по производству смазок, некоторых катализаторов. На нефтехимических заводах число периодических процессов больше. Это приводит к необходимости иметь резервные реакторы, регенераторы и другое оборудование, иногда целые резервные линии для обеспечения непрерывного выпуска продукции, Например, резервные линии есть в производстве полиэтилена, этилового спирта, на стадии дегидрирования. Во время остановки одной из линий подключают резервную, поэтому про-изБодственпый процесс прерывается только в период капитального ремонта. Непрерывность технологических процессов позволяет организовать в нефтеперерабатывающей и нефтехимической промышленности непрерывное, поточное производство. [c.21]

    Необходимая четкость разделения и чистота газовых фракций зависят от условий их дальнейшей технологической переработки. Так, для получения полиэтилена глубокой полимеризацией под давлением выше 1000 ати требуется необычайно высокая чистота исходного этилена (99,9%). Однако новейшие способы полимеризации при низком давлении над гетерогенными катализаторами и в присутствии растворителей позволяют снизить чистоту сырья до 95% [24]. Для получения этанола гидратацией над фосфорнокислым катализатором требуется этилеп 97 %-ной чистоты, а старейший способ производства этилового спирта и эфира при помощи серной кислоты позволяет использовать газ с 35—95%-пым содержанием С2Н4. При алкипирова-пии бензола этиленом в присутствии хлористого алюминия желательна чистота этиленового сырья не ниже 90%, а с фосфорнокислым катализатором может использоваться этан-этиленовая смесь. Окись этилена получается и 95%-ного этилена. [c.158]

    Для сдвига равновесия реакции в сторону образования 3-аланина следует обеспечить большой избыток аммиака и высокую температуру [44, 66]. По данным Е. Жданович [50], требуется температура реакции 154— 158° С (избыточное давление 26—32 кгс/см ), соотношение 10%-ного раствора аммиака к акрилонитрилу 18,5 1 и углекислого аммония к акрилонитрилу 3,7 1. На основании этих данных технологический процесс заключается в следующем в горизонтальный автоклав 1 (рис. 18) с вращающейся мешалкой и паровой рубашкой загружают из мерника 2 водный раствор (10—15%) аммиака и из сборника 3 двууглекислого аммония и из мерника 4 акрилонитрил. Нагревают реакционную массу до 154—158° С, при этом избыточное давление повышается до 30—40 кгс1см . Не допускается загрузка более 0,4 объема автоклава. Из автоклава реакционную массу выгружают в перегонный аппарат 5, где отгоняют водный раствор аммиака. Кубовый остаток сливают в реактор 6, разбавляют водой и очищают активированным углем при температуре 40—50° С уголь отфильтровывают на нутч-фильтре 7, фильтрат направляют в сборник 8, а затем в вакуум-аппарат 9 для сгущения. Сгущенный раствор сливают в кристаллизатор 10, где выделяют -аланин добавлением из мерника // этилового абсолютированного спирта при температуре 0-1-5° С. Затем осадок фугуют в центрифуге 2. Кристаллы сушат в вакуум-сушилке 13 и направляют в сборник 14. Маточный раствор поступает в сборник 15, откуда засасывают в вакуум-аппарат 16, сгущают, сливают в кристаллизатор 17, где спиртом выделяют дополнительное количество -аланина, который отфуговывают в центрифуге 18. Кристаллы -аланина II для переосаждения направляют в реактор-кристаллизатор 10. Маточный раствор II из центрифуги 18 собирают в приемнике 19, он является либо отходом производства, либо его направляют на переработку в -аланин. Выход -аланина — прямой 40—50%, а при регенерации -аланина из вторичного и третичного аминов выход может быть увеличен до 65—70 %. -Аланин ( -аминопропионовая кислота) aHjOaN представляет собой бесцветные кристаллы с температурой 199— 200° С [52], молекулярная масса 89,09, хорошо растворим в воде, труднее в метиловом, этиловом и изопропиловом спиртах нерастворим в эфире и ацетоне. [c.144]

    Плодотворными оказались 50-е годы начато строительство нефтехимического комбината и уже в 1954 г. пущена его первая очередь — по производству фенола и ацетона в дальнейшем на его базе освоено производство синтетического этилового спирта и налажен вьшуск полиэтилена низкого давления. Наконец, введен в строй Новогрозненский нефтеперерабатывающий завод, на котором были сосредоточены мощности по производству высокосортных авиационных бензинов и по вторичным процессам крекингу и гидроочистке, риформингу и алкилированию. Дальнейшее развитие грозненской перерабатывающей базы в то время в немалой степени обусловливалось открытием и эксплуатацией новых месторождений нефти и газа в Озерск-Суате, Зимней Ставке, Величаевке, а затем Карабулак-Ачалукского, Малгобек-Воз-несенского и в Али-Юрте. Наконец, в 1960 г. впервые в стране была заложена сверхглубокая Галючаевская скважина (5500 м). Все это позволило к 1970 г. довести добычу до 20,3 млн. т нефти и 4,3 млрд. куб. м газа и превысить азербайджанский нефтяной уровень . Именно к тому же времени начали достигать своего наивысшего развития и местные перерабатывающие отрасли (17-20 млн. т в год), на ходу продолжая совершенствовать всю технологическую цепочку. Динамика роста возможностей грозненских заводов [c.97]

    На заводах синтетического этилового спирта, работающих сернокислотным способом, возможно использование этилена в виде этан-этиленовой фракции с относительно широким интервалом концентрации этилена (35—95%). После извлечения этилена серной кислотой этан возвращается на пиролиз. В этом случае применяется одна колонна с небольшим числом тарелок для отгонки этан-этиленовой фракции, а кубовый продукт, содержащий этан, пропан, пропилен и высшие, возвращается на пиролиз. При получении синтетического этилового спирта. методом прямой гидратации требуется применение фракции Сг с содержанием этилена 1не менее 95%об. В ряде других производств (алкилирова-ние бензола с целью получения этилбензола, прямое окисление в окись этилена, получение хлорпроизводных) достаточно иметь газ с 90—95% содержанием этилена. На полимеразицию под высоким давлением и другими методами направляется этилен с концентрацией 99,9%. Применение высококонцептрированного этилена, выделение которого требует значительных затрат, в ряде случаев выгодно с технологической точки зрения, т. к. облегчается освобождение от других примесей, являющихся ядами катализаторов, отпадает необходимость ректификации при рециркуляции непрореагировавшего этилена. [c.68]

    Исходное сырье метилдихлорсилан (фракция 40—44° С 60,5— 63% хлора df = 1,080—1,117), бутиловый спирт (т. кип. 115— 118 °С df = 0,808—0,812), этиловый спирт-ректификат и кальцинированная сода. Принципиальная технологическая схема производства олигометилгидридсилоксана приведена на рис. 59. [c.172]

    Для производства этилцеллозольва используют этиловый спирт и окись этилена. Как правило, качество сырья мало сказывается на технологических параметрах и схеме производства, но влияет на качество товарного этилцеллозольва п способ переработки его кубовых остатков. Хорошим сырьем для производства этилцеллозольва является окись этплена, получаемая прямым окислением этилена, В ней содержится более 99,5% основного вещества, а примеси ацо-тальдегида п воды не превышают 0,05%. [c.318]

    Технологическая схема переработки сернистых нефтей на новейших заводах позволяет обеспечить максимальное получение автомобильного бензина, авиационного керосииа и дизельного топлива повышение антидетоиационных свойств автомобильного бензина (октановое число не ниже 70—72 в чистом виде) улучшение качеств дизельного топлива, в частности снижение содержания серы производство всей гаммы главнейших видов смазочных масел и парафина получение химических продуктов — моющих средств, этилового спирта, жирных кислот, серной кислоты (или элементарной серы) и др. [c.412]

    Повышение концентрации производства или агрегатной концентрации производства, т. е. внедрение укрупненных агрегатов и высокопроизводительных линий, как правило, позволяет увеличить выпуск продукции с меньщими капитальными затратами. Например, при увеличении мощности технологических линий в 4 раза удельные капитальные вложения в производство этилового спирта возросли только в 2,3 раза. Эта экономия достигается в результате сокращения (в расчете на единицу мощности) затрат на изготовление оборудования и его монтаж, а также на строительство зданий и сооружений. Кроме того, снижаются эксплуатационные затраты, возрастает производительность труда. [c.253]

    Целый ряд технологических процессов полностью основан на процессах выделения и очистки. К ним относятся, напрнмер, производство углеводородных газов, легких бензинов, Си итет -ческО о каучука, этилового спирта. Аналитический контроль за ходом этнх процессов базировался на длительных и трудоемких лабораторных методах низкотемпературной ректификации, инфракрасной спектроскопии, объемных методах газового анализа. Длительность анализов достигала 5—8 ч. Кроме того, данные методы анализа не обеспечивали требуемой чувствительности определений и точности результатов. [c.299]

    Для повышения содержания активного компонента в присадке в технологическую схему производства сульфонатных присадок из нефхя-ных масел часто включают стадию экстракции сульфокислот из сульфированного масла [22,26,27]. В качестве экстрагентов сульфокислот или их солей применяют воду, спирты (метиловый, этиловый и изопропиловый в виде спирто-водной смеси), гликоли, диметилсудьфоксид, фенол. [c.16]


Смотреть страницы где упоминается термин Спирта этилового производства технологическая: [c.168]    [c.19]    [c.8]    [c.15]    [c.7]    [c.193]   
Машины и аппараты пищевых производств (2001) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Этиловый спирт

Этиловый спирт производство



© 2025 chem21.info Реклама на сайте