Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Закон разбавленных растворов

    В случаях, когда рассматриваемая система состоит из компонентов, характеризующихся достаточно слабой взаимной растворимостью, условия парожидкого равновесия могут быть рассчитаны по законам разбавленных растворов, так как при малых значениях составов растворенных веществ эти законы выдерживаются с приемлемой практической точностью. [c.155]

    Полученные на основе применения законов разбавленных растворов соотношения 299—302 позволяют сделать ряд важных выводов по парожидкому равновесию в системах веществ, характеризующихся слабой взаимной растворимостью. [c.157]


    Для нахождения общей упругости паров раствора, являющейся аддитивным свойством, необходимо сложить парциальные упругости его компонентов. Так, применяя законы разбавленных растворов к однородным жидким системам с начальным составом х, заключенным в интервале концентраций О < л -< х а [c.157]

    Возрождение в начале XX века химической теории растворов вызвало проявление иной крайности все отклонения от законов разбавленных растворов пытались объяснить наличием определенных химических соединений, не учитывая неизбежных отклонений, вызываемых различием молекулярных силовых полей. [c.167]

    Опытные данные указывают на то, что увеличение отклонений от законов разбавленных растворов сопровождается повышением электрической проводимости растворов, а также способности к химическому взаимодействию. Перечисленные особенности растворов электролитов, обнаружение ионов путем спектрального анализа и другие экспериментальные факты привели к появлению во второй половине XIX в. теории электролитической диссоциации Аррениуса, в соответствии с которой при образовании раствора электролита происходит диссоциация растворенного вещества на ионы, тем более полная, чем больше разбавлен раствор электролита. Несмотря на упрощенность этой теории, совершенно не рассматривающей причин диссоциации, не учитывающей сил взаимодействия между частицами, образования сольватов и других явлений, она позволила объяснить целый ряд опытных фактов. [c.202]

    Законы разбавленных растворов верны для любых веществ, однако лишь при большом разбавлении. Законы совершенных растворов справедливы для некоторых веществ, но при любых концентрациях. Заметим, что разбавленные растворы можно рассматривать как совершенные в отношении растворителя. Действительно, смешение растворителя с таким раствором происходит без теплового эффекта выражения для химического потенциала и давления пара растворителя совпадают с соответствующими выражениями для компонентов совершенных растворов. [c.105]

    Второе положение теории С. Аррениуса состоит в том, что растворы электролитов подчиняются законам разбавленных растворов. [c.143]

    Активность электролита пропорциональна давлению его пара. Для определения коэффициента пропорциональности необходимо иметь данные, относящиеся к области концентраций, в которой выполняются законы разбавленных растворов. Для конкретности рассмотрим задачу определения активности НС1 по давлению его пара  [c.165]

    Особый случай порядка осуществляется в растворах электролитов. Как указывалось в гл. VHI, сильные электролиты характеризуются полной диссоциацией на ионы, и все отклонения от законов разбавленных растворов связаны не с частичной диссоциацией молекул, а с электростатистическим взаимодействием ионов. [c.249]


    Так как отклонения от законов разбавленных растворов случае электролитов обязаны целиком упорядочению, то — == ЯТ 1п у, где у — коэффициент активности. [c.252]

    Решение вопроса последовало на основе результатов изучения электропроводности растворов. Известно было, что растворы в таких растворителях, как эфир, бензол и т. п., не проводят электрический ток, а в водных растворах ток хорошо проводят только кислоты, основания и соли, т. е. именно те вещества, для которых наблюдаются отклонения от закона разбавленных растворов. [c.168]

    Количественную характеристику равновесного состояния электролита дает его степень диссоциации, т. е. отношение числа молекул, распавшихся на ионы, к общему числу растворенных молекул.. Это отношение часто множат на 100 и, таким образом, выражают диссоциированную часть в процентах от общего числа молекул. Числовые значения степеней диссоциации можно найти с помощью закона разбавленных растворов. [c.174]

    Идеальный раствор. Законы разбавленных растворов. При образовании растворов характер взаимодействия компонентов определяется их химической природой, что затрудняет выявление общих закономерностей. Поэтому удобно прибегнуть к некоторой идеализированной модели раствора, в которой исключаются конкретные особенности процесса растворения, однако сохраняются наиболее существенные черты всех растворов. [c.246]

    Кроме того, растворы, для которых характерны отклонения от законов разбавленных растворов, обладают значительной электри- [c.255]

    С учетом степени электролитической ионизации можно применить законы разбавленных растворов и к растворам электролитов введением поправочного множителя г, называемого изотоническим коэффициентом Вант-Гоффа. Тогда отношение соответствующего свойства (понижение давления пара, изменение температуры плавления и кипения, осмотическое давление) для электролита к аналогичному свойству раствора неэлектролита той же концентрации равно коэффициенту Вант-Гоффа, т. е. [c.258]

    Отступление растворов электролитов от законов разбавленных растворов. [c.155]

    Шведский ученый Аррениус в 1887 г. объяснил отступления электролитов от законов разбавленных растворов обратимым распадом электролитов на ионы под влиянием растворителя вследствие этого число осмотически деятельных частиц возрастает, что зависит от степени диссоциации электролита в данных условиях. Распад на ионы называется электролитической диссоциацией. Степень диссоциации — это доля молекул, распавшихся на ионы при равновесии. Соли диссоциируют на катионы металлов и анионы кислотных остатков. Кислоты образуют катионы водорода и кислотные остатки в качестве анионов, основания образуют гидроксильные отрицательные ионы и металлические положительные ионы. Например  [c.156]

    Второе положение теории С. Аррениуса состоит в том, что растворы электролитов подчиняются законам разбавленных растворов. Экспериментальное доказательство справедливости этих утверждений может быть получено, если определяемая различными способами степень диссоциации данного электролита окажется одной и той же. Существуют две группы явлений, изучение которых дает возможность определить а. [c.192]

    Раствор подчиняется законам разбавленных растворов. [c.196]

    Гипотеза ионизации. Количественные исследования зависимости свойств разбавленных растворов от концентрации растворенного вещества показали, что для всех этих свойств (понижения давления пара, повышения температуры кипения, понижения температуры замерзания и осмотических явлений) действителен один и тот же закон разбавленных растворов (Рауль — Вант-Гофф, 1886 г.) свойства разбавленных растворов нзме- [c.130]

    Приведенный закон разбавленных растворов, сводящий изменение различных свойств к одной простой закономерности, явился большим научным достижением. Однако теория содержала в себе внутреннее противоречие, которое, как это обычно и бывает, послужило толчком для ее дальнейшего развития. [c.131]

    Кроме того, растворы, для которых характерны отклонения от законов разбавленных растворов, обладают значительной электрической проводимостью в отличие от водных растворов некоторых органических веществ. Это можно было объяснить наличием в растворе заряженных частиц. Вещества, растворы (или расплавы) которых проводят электрический ток, были названы электролитами. [c.152]

    С учетом степени электролитической ионизации можно применить законы разбавленных растворов и к растворам электролитов введением поправочного множителя г, называемого изотоническим коэффициентом Вант-Гоффа. Тогда отношение коллигативного свойства для электролита к аналогичному свойству раствора неэлектролита трй же концентрации равно коэффициенту Вант-Гоффа, т.е. [c.154]

    Соотношение (У Гб) позволяет определить степень ионизации электролита по отклонению его свойств от законов разбавленных растворов. [c.155]

    Вопросы, непосредственно относящиеся к области физической химии или химической термодинамики, трактуются в предлагаемой работе лишь в минимально необходимой степени, равно как и вопросы аппаратурного оформления рассматриваемых процессов. Сложность, громоздкость и, в конечном счете, ненадежность предложенных до настоящего времени методов расчета условий парожидкого равновесия неидеальных систем послужили причиной отказа от их изложения, и во всей работе равновесные изобарные кривые кипения и конденсации рассматрк-ваются как определенные опытным путем. Лишь в отношении систем, компоненты которых характеризуются весьма слабой взаимной растворимостью, представилось возможным изложить достаточно простой теоретический анализ на основе применения законов разбавленных растворов. [c.3]


    НИИ подчиняются общим законам разбавленных растворов. Растворы высокомолекулярных соединений могут быть приготовлены также с высокой концентрацией по массе — до десяти и более процентов. Однако мольная концентрация таких растворов мала из-за большой молекулярной массы растворенного вещества. Так 10%-иый раствор вещества с молекулярной массой 100 000 представляет собой лншь примерно 0,0011 М раствор. [c.314]

    Гипотеза ионизации. Количественные исследования зависимости свойств разбавленных растворов от концентрации растворенного вещества показали, что для всех этих свойств — понижения давления пара, повышения температуры кипения, понижения температуры замерзания, а также для осмотических явлений, действителен один и тот же закон разбавленных растворов (Рауль — Вант-Гофф, 1886 г.) свойства разбавленных растворов изменяются прямо пропорционально относительному числу растворенных ч а стцц. [c.167]

    Пример. Исследования водных растворов веществ с известными молекулярными весами показывают, что при растворении в 1000 г воды одной грамм-молекулы температура замерзания понижается на 1,86 град. Следовательно, по закону разбавленных растворов при растворении в том же количестве воды /2 грамм-молекулы температура замерзания должна понизиться на 0,93 град, при растворении 0,1 грамм-молекулы — на 0,186 град и т. д. Пусть теперь требуется определить молекулярный вес глюкозы. Анализ этого соединения дает простейшую формулу СН2О (сумма атомных весов равна 30). Очевидно, что истинная формула глюкозы будет ( HjO) , где п может быть равно или 1, или 2, или 3 и т. д. Для решения вопроса о величине п растворяем ЗОг глюкозы в 1000 г воды и определяем температуру замерзания раствора. Опыт показывает, что она понижается на 0,31 град, т. е. на /в от 1,86 град. Следовательно, 30 г соответствуют /б грамм-молекулы, т. е. п = , и истинная формула глюкозы eHisOs.  [c.168]

    Электролитическая ионизация. Степень ионизации. Константа ионизации. Изучение разбавленных растворов показало, что все их общие свойства (понижение давления пара, изменение температур замерзания и кипения, величина осмотического давления) изменяются пропорционально числу частиц растворенного вещества . Эта формулировка представляет собой обобщенный закон разбавленных растворов Рауля — Вант-Гоффа. Эта общая закономерность оказалась справедливой для растворов органических веществ в воде и для растворов в органических растворителях. При исследовании водных растворов солей, кислот, оснований было обнаружено, что изменение соответствующего свойства в зависимости от состава раствора значительно превышает ожидаемую величину. Например, понижение температуры замерзания моляльного раствора Na l превышает почти в два раза криоскопическую постоянную для воды (3,36° вместо 1,86" ). Это свидетельствует о том, что число частиц в водных растворах кислот, оснований и солей не соответствует молярной концентрации раствора. [c.255]

    Очевидно, что для растворов электролитов всегда >1, а для растворов неэлектролитов =1. Из соотношений (VIII.25) следует, что законы разбавленных растворов могут быть легко трансформированы применительно к растворам электролитов  [c.258]

    Соотношение (УП1.27) позволяет определить степень ионизации электролита по отклонению его свойств от законов разбавленных растворов. В качестве примера определим степень ионизации 0,1 и. К2804, который замерзает при —0,225° С (АГэ =0,225°). Для водных растворов неэлектролитов криоскопическая константа равна Лк= 1,86°. Если бы К2504 не распадался на ионы в водном растворе, то соответствующее понижение 0,1 н. раствора было бы равно [c.259]

    Иногда его называют коэффициентом сегрегации или коэффициентом ликвации. Коэффициент распределения — очень важная характеристика примеси. Он определяет поведение примеси при кристаллизации и характер распределения ее в вырап енном кристалле, а также позволяет оценить эффективность очистки вещества в процессе кристаллизации. Величина к зависит от природы примеси и основного вещества, типа фазовой диаграммы соответствующей системы, условий кристаллизации, скорости перемещения расплавленной зоны, интенсивности перемешивания и т. п. При кристаллизации из расплава различают равновесный и эффективный коэффициенты распределения. Равновесный коэффициент распределения к применим к бесконечно медленной кристаллизации при равновесии между соприкасающимися фазами. Эффективный коэффициент распределения характеризует процессы кристаллизации с измеримой скоростью (состояние системы неравновесно). Величина /г для различных примесей в одном и том же веществе может меняться в очень широких пределах. Примеси, понижающие температуру плавления, имеют к <. 1, а примеси, повышающие температуру,— к > 1, На рис. 32 показаны участки фазовых диаграмм в области небольших концентраций примеси. При этих концентрациях можно использовать для описания состояния системы законы разбавленных растворов и считать, что шнии солидуса и ликвидуса близки к прямым. Тогда коэффициент распределения легко рассчитать. Он равен отношению отрезков горизонтальных линий от оси температур до их пересечения с линиями солидуса и ликвидуса. Если угол между линиями солидуса и ликвидуса мал и концентрации и [c.61]

    Обычно величины, относящиеся к растворителю, снабжают индексом 1, а к растворенным веществам индексом i (i—2, 3,. ..). Бесконечно разбавленный раствор характеризуется тем, что а N - 0. В таком растворе частицы растворенного вещества отделены друг от друга большим числом частиц растворителя и не взаимодействуют между собой подобно молекулам в идеальном газе. В разбавленном растворе частицы растворенного вещества взаимодействуют только с окружающими нх частицами растворителя. Вследствие этого добавление в разбавленный раствор каждой новой частицы компонента 2 или 3 сопровождается одним и тем же изменением и или Н, равным изменению, происходящему при добавлении частицы в чистый растворитель. Поэтому теплота растворения, например компонента 2, не зависит от концентрации (пока раствор остается разбавленным). Процесс разбавления, т.е. смешение чистого растворителя с разбавленным раствором, происходит без теплового эффекта, так как энергия взаимодействия частиц 2 и 1 не изменяется. Этот процесс подобен изотермическому расширению идеального газа и его стимулом является только увеличение энтронни вследствие возрастания вероятности распределения частиц 2 в большем объеме. Такая аналогия позволяет ожидать, что между концентрациями компонентов в разбавленных растворах и их свойствам1т должна существовать простая связь. Одним из важных законов разбавленных растворов является закон Геири. Он связывает парциальное давление компонента в газе над раствором р2 с его концентрацией в этом растворе Сг. Закон Генри может быть выведен из рассмотрения скоростей двух противоположно направленных процессов — растворения и испарения, происходящих при постоянной температуре. Скорость растворения газа в конденсированной фазе со пропорциональна р2, т. е. со =й р2, а скорость испарения of пропорциональна Са и м =й"С2. При равновесии со = = of, следовательно, k p2 = k" 2 или 2lp2=k lk". Таким образом, при постоянной температуре отношение С2/Р2 есть постоянная величина, которую обозначают буквой г (постоянная Генри). [c.61]

    Подобные факты лежат в основе двух главных положений теории сильных электролитов 1) полная диссоциация, 2) несоблюдение законов разбавленных растворов из-за взаимодействия между ионами, которое медленно уменьшается с увеличением расстояния. Поэтому даже в разбавленных растворах каждый ион окрух<ен, как бы роем ионов противоположного знака. [c.120]


Смотреть страницы где упоминается термин Закон разбавленных растворов: [c.156]    [c.202]    [c.147]    [c.102]    [c.169]    [c.102]   
Учебник общей химии (1981) -- [ c.130 ]

Химическая термодинамика (1950) -- [ c.196 ]

Основы общей химии Том 2 Издание 3 (1973) -- [ c.167 ]




ПОИСК





Смотрите так же термины и статьи:

Давление пара разбавленных растворов неэлектролитов. Закон Рауля

Давление пара разбавленных растворов неэлектролитов. Первый закон Рауля

Давление пара разбавленных растворов. Закон Рауля

Закон Рауля. Идеальные растворы. Предельно разбавленные растворы

Закон действующих масс для разбавленных растворов

Закон действующих масс для разбавленных растворов распределения

Закон равновесия в приближении разбавленного раствора

Закон разбавленных растворов Рауля Вант-Гоффа

Идеальный раствор. Законы разбавленных растворов

Исследование разбавленных растворов Применение закона Рауля

Исследование разбавленных растворов Разбавленные растворы, закон Рауля

О концентрационной области применимости законов предельно разбавленных растворов

Осмотическое давление разбавленных растворов неэлектролитов и электролитов. Закон Вант-Гоффа

Отклонение свойств разбавленных растворов солей, кислот и оснований от законов Рауля и Вант-Гоффа

Отклонения от закона Рауля в разбавленных растворах

Отступление растворов электролитов от законов разбавленных растворов. Теория электролитической диссоциации. Степень диссоциации и ее вычисление. Сильные и слабые электролиты

Поверхностное натяжение разбавленных растворов электролитов, предельный закон

Предельно разбавленные растворы. Закон Генри

Применение законов разбавленных растворов для определения молекулярных масс веществ

РАСТВОРЫ Разбавленные растворы

Разбавленные растворы Закон Рауля

Разбавленные растворы неэлектролитов. Законы Вант-Гоффа и Рауля

Растворы законы

Растворы разбавленные



© 2025 chem21.info Реклама на сайте