Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электролитическая степень

Таблица I I. Степень электролитической диссоциации ряда электролитов по данным измерений электропроводности (о ) и осмотического давления (из) Таблица I I. <a href="/info/4962">Степень электролитической диссоциации</a> ряда электролитов по <a href="/info/1705788">данным измерений</a> электропроводности (о ) и осмотического давления (из)

    Электролитическая диссоциация воды. Хотя вода часто рассматривается как вещество, практически не диссоциирующее на ионы, однако в действительности в очень малой степени вода всегда диссоциирует по уравнению  [c.399]

    Зависимость степени электролитической диссоциации от природы растворителя, температуры и посторонних электролитов [c.437]

    Процесс получения водорода методом электролиза воды является пожаро- и взрывоопасным. Опасность аварий, взрывов и пожаров может возникнуть при нарушениях технологического режима, утечках электролитических газов — водорода и кислорода, их смешении в коллекторах и внутри аппаратов во взрывоопасных соотношениях при проникновении водорода в кислород и кислорода в водород. Входящие в состав производства помещения электролиза воды, очистки и осушки водорода, наружные установки водорода (мокрые газгольдеры), отделения компрессии, наполнения и склады баллонов водорода по степени пожаро- и взрывоопасности относятся к категории А. [c.61]

    Применяя различные деполяризаторы, можно проводить электролитическое восстановление или окисление данного исходного продукта до той или другой степени. Это используется, например, при электрохимическом проведении некоторых реакций органического синтеза. Деполяризаторы широко применяются также в различных гальванических элементах. [c.449]

    Согласно (2.74) степень электролитической диссоциации слабого электролита с разбавлением.раствора растет. Так, в растворе, [c.249]

Рис. 58. Изменение степени электролитической диссоциации с разбавлением V (схема) Рис. 58. Изменение <a href="/info/4962">степени электролитической диссоциации</a> с разбавлением V (схема)
    Т а 6 л и ц а I 2, Степень электролитической диссоциации H I по данным измерений электропроводности (ui) и э.д.с. (о.з) [c.43]

    Рост эквивалентной электрической проводимости с увеличением разведения (см. рис. 166) для слабых электролитов может быть объяснен на основе представлений классической теории электролитической диссоциации, согласно которой с увеличением разведения степень диссоциации элетролита возрастает и в пределе стремится к 1. Для сильных электролитов, диссоциирующих полностью. [c.460]

    Теория электролитической диссоциации связывает качественные изменения, наблюдающиеся в растворах электролитов при увеличении или уменьшении концентрации, с изменением степени электролитической диссоциации. Степень электролитической диссоциации рассматривается этой теорией как одна из основных количественных характеристик раствора электролита. [c.35]


    Электролиты при растворении распадаются на ионы не полностью. Для молекул, распавшихся в состоянии равновесия на ионы, отвечает степени электролитической диссоциации и обозначается через а. Степень электролитической диссоциации равна отношению числа молекул, распавшихся на ионы, п к общему числу растворенных молел N (ионизированных п и неионизированных Ла)  [c.35]

    Восстановление изношенных шеек вала в зависимости от степени износа осуществляется следующими способами до 0,3 мм — электролитическим хромированием от 1,5 до 2,0 мм —электролитическим железнением от 2,0 до 3,0 мм — автоматической вибродуговой наплавкой от 3,0 до 4,0 мм —ручной газовой наплавкой свыше 4,0 мм — ручной электродуговой наплавкой. [c.242]

    Для слабых электролитов следует учитывать степень электролитической диссоциации а и вместо (4.9) писать [c.104]

    Ясно, что чем больше электростатическое взаимодействие ионов, тем меньше должна быть степень диссоциации. Но диэлектрическую проницаемость нельзя считать единственным фактором, влияющим на электролитическую диссоциацию, так как в большинстве случаев диссоциация является сложной функцией специфических свойств как растворителя, так и растворяемого соединения, а также функцией их взаимодействия. [c.439]

    При данном значении потенциала электрода скорость процесса электролитического восстановления (или окисления) обычно растет с увеличением концентрации разряжающи.хея частиц. Однако такая простая зависимость наблюдается не всегда. В кинетических уравнения.ч, описывающих реакции электровосстановления (или электроокисления), концентрации исходных веществ могут входить со степенями, большими единицы, равными нулю или правильной дроби. В уравнеиия, описывающие кинетику электровосстановления органически.х соединений, их объемная концентрация в.ходит обычно в дробной степени. [c.434]

    Диссоциация слабых электролитов подчиняется закону действующих масс и может быть количественно охарактеризована константой равновесия. Классическим примером слабого электролита может служить уксусная кислота в разбавленном водном растворе. В таком растворе устанавливается равновесие диссоциации СНзСООН СНзСОО + Н . Количественно этот процесс характеризуется степенью диссоциации и константой диссоциации. Степенью электролитической диссоциации а называют отношение числа молекул, распавшихся на ионы, к общему числу молекул  [c.430]

    В практике электролиза количество выделившегося из электролита вещества всегда бывает меньше, чом это получается вычислением по уравнениям (124) или (125), так как при. электролизе всегда в той или иной степени протекают побочные процессы, наличие и влияние которых зависит от чистоты электролита, характера примесей в нем, от режима работы электролитической установки, от концентрации рассола, подаваемого на электролиз. [c.247]

    Согласно (IV.32), степень электролитической диссоциации [c.178]

    Теория электролитической диссоциации Аррениуса не учитывала влияния концентрации на подвижность ионов, хотя, как выяснилось, влияние концентрации на подвижность может быть весьма существенным. Уменьшение эквивалентной электропроводности с концентрацией Аррениус объяснял не уменьшением подвижности ионов, а уменьшением степени диссоциации. [c.433]

    В подобных равновесных системах часть молекул остается не диссоциированной на ионы. Для количественной характеристики соотношения диссоциированных и недиссоциированных молекул электролита при данных условиях пользуются понятием степени диссоциации. Степень электролитической диссоциации а равна отношению числа молекул, распавшихся на ионы, к общему числу растворенных молекул. (Подобной величиной мы пользовались и ранее см. стр. 73). [c.166]

    Если растворен 1 моль электролита, степень электролитической диссоциации которого равна а, то [c.249]

    Таким образом оказывается, что теория электролитической диссоциации приложима только к разбавленным растворам слабых электролитов. Поведение концентрированных растворов слабых электролитов, а также растворов сил1>ных электролитов любых концентраций нельзя описать количественно иа основании теории Аррениуса. Степень электролитической диссоциации не отвечает тому физическому смыслу, который вкладывается в нее теорией. Константа диссоциации не является постоянной величиной, а представляет собой функцию концентрации электролита. [c.44]

    Можно предположить, что эквивалентная электропроводность растворов электролитов пропорциональна степени их электролитической диссоциации в растворах  [c.166]

    Если растворен 1 мом электролита, у которого степень электролитической диссоциации равна а, то [c.177]

    Степень электролитической диссоциации а, определяющая долю ионизироваиных молекул в данном растворе, должна быть при заданных условиях одной и той >1се (независимо от метода ее измерения), причем в согласии с ее 4 изическим смыслом она не может быть бо.льше единицы и меньше гуля. Насколько хорошо это согласуется с опытом, видно нз табл. ], 1, где для ряда электролитов дано сопоставление величин а, найденных при помощи измерения их осмотического давления и электропроводности. [c.42]


    Анодное окисление и катодное восстановление примесей, содержащихся в сточных водах, осуществляется электролизом сточных вод с использованием электролитически нерастворимых анодных материалов (угля, магнетита, диоксидов свинца, марганца или рутения, нанесенных на титановую основу). Для повышения электропроводности сточных вод, снижения расхода электроэнергии и интенсификации процессов окисления в воду вводят неорганические соединения. При очистке воды от цианидов вводят 5—10 г/л Na l. Степень окисления цианидов достигает 100 % при расходе электроэнергии 0,2 кВт-ч/г N-. [c.495]

    Вернемся теперь к задаче 9.3. Ролик покрыт тонким и легко деформирующимся слоем электропроводного материала. Идеально было бы после каждого оборота — на ходу — снимать деформированный слой и наносить новый слой ровный, неде рмированный. Два противоположных действия, для выполнения которых нужен инверсный биэффект электролитическое растворение и электролитическое же осаждение (а. с. 872165). При решении этой задачи часто выходят на идею электролиза. И останавливаются перед психологическим барьером электролитическое осаждение металла на неровную поверхность только увеличит степень ее неровности. Весь фокус в том, что нужен эффект-антиэффект сначала удаление неровностей, потом нанесение нового слоя. [c.165]

    Степень электролитической диссоциации вещества, растворенного в данном растворителе, зависит (при постоянных температуре и давлении) от природы этого вещества и от его концентрации. Если вещество прн растворении не диссоциирует ( = 0, а = Л/, а = 0), оно не является электролитом. Если а близка к единице, то и соединение является сильным электролитом. Для многих химических соединетшй 0<ы<С1, а следовательно, п< М они относятся к слабым электролитам. [c.35]

    Физический смысл этого эмпирического множителя, называемого изотопическим фактором, оставался до создания теории электролитической диссоциации совершенно неясным. По теории Аррениуса изоторн1ческий фактор появляется как естественный рез) Л1>-тат электролитической диссоциации, увеличивающей общее число частиц растворенного вещества. Изотонический фактор должен быть поэтому функцией степени электро-пнтической диссоциации. Действительно, пусть молекула электролита распадается при диссоциации на V ионов, тогда прн степени диссоциации а истинное число часгиц, определяемое произведением 1с (где с —. молярная коицеитрацня электролита), равно [c.37]

    Можно использовать также мольно-объемные концентрации с, но в этом случае константа диссоциации будет иметь другое числовое значение. Введем в качестве меры электролитической диссоциации величину степени диссоциации а, определяемую как долю молекул, распавшихся на ионы (сравн. т. I, гл. VUl, стр. 273). Тогда количества грамм-ионов, получившихся при диссоциации 1 моль диссоциируюш,его вещества, выразятся величинами, написанными под химическими формулами в уравнении (XVI, 2), а выражение для константы диссоциации примет следующий вид  [c.390]

    Обнаруженная М. А. Лошкаревь м адсорбционная поляризация проявляется в том, что при добавлении к раствору некоторых поверхностно-активных веществ (иапример, трибензиламина) изменяется скорость выделения металла на ртутном и на твердых катодах. Она становится, во-первых, меньше той, что наблюдалась до введения добавки, и, во-вторых, не зависящей в широкой области потенциалов от катодного потенциала. Однако после того как достигается определенный (обычно весьма отрицательный) потенциал, действие добавки прекращается. Скорость выделения начинает быстро расти, приближаясь к нормальному для этих условий зна-чеЕигю, отвечающему предельному диффузионному току. Сопоставление результатов иоляризационных измерений на ртутных катодах с электрокапиллярными кривыми и кривыми дифференциальной емкости (снятыми до и после введения добавки) показали, что потенциал, при котором прекращается дйствие добавки, совпадает с потенциалом ее десорбции (рис. 22.5). Действие добавки оказывается при этом специфическим. Одни и те же добавки или определенная их комбинация в разной степени тормозят разряд различных ионов на ртутном катоде. Явление адсорбционной поляризации используется для улучшения качества гальванических осадков при электролитическом получении сплавов. [c.462]

    С)бразуюш,ийся при пирометаллургической переработке руды SO. идет на производство серной кислоты, а шлак используется для производства шлакобетона, каменного литья, шлаковаты и пр. Получаемая пирометаллургическим методом медь обычно содержит 95—98% Си. Для получения меди высокой степени чистоты проводится электролитическое рафинирование электролизом USO4 с медным анодом. При этом сопутствующие меди благородные металлы, селей, теллур и другие ценные примеси концентрируются в анодном шламе, откуда их извлекают специальной переработкой. [c.623]

    Марганец получают либо электролизом раствора MnS04, либо восстановлением из его оксидов кремнием в электрических печах. Второй (силикотермический) метод более экономичен, но дает менее чистый продукт. При электролитическом методе руду восстанавливают до соединений марганца со степенью окисленности - -2, а затем растворяют в смеси серной кислоты с сульфатом аммония. Получающийся раствор подвергают электролизу. Снятые с катодов осадки металла переплавляют в слитки. [c.662]

    К началу XX в. теория электролитической диссоциации достигла больших успехов. На ее основе были объяснены многочисленные и разнообразные экспериментальные данные по электропроводности растворов, осмотическому давлению, температурам замерзания и другим физико-химическим свойствам растворов. Однако ряд экспериментальных данных теория объяснить не могла. Так, константа диссоциации электролита, выражаемая уравнением типа (152.4), в широком интервале концентраций изменялась. Особенно резкая концентрационная зависимость наблюдалась у водных растворов неорганических кислот, оснований и их солей (H2SO4, НС], NaOH, K l и т. п.). Разные экспериментальные методы часто приводили к неодинаковым значениям степени диссоциации электролита в одних и тех же условиях. [c.431]

    Концентрацию ионов (г-ионЦ) находят умножением концентрации электролита моль/л) на степень диссоциации а и на коэффициент 2, показывающий, сколько ионов данного типа образуется при распаде одной молекулы. Например, при электролитической диссоциации А1С1з для 2=1, а для С1" 2 = 3. Если молярность раствора с равна 0,1 и а = 0,4, то концентрация ионов А1 + равна 0,1 1 0,4 = 0,04 г-ион1л, а концентрация С)" равна 0,1 3 0,4 = 0,12 г-ион1л. [c.459]

    При растворении в воде или других растворителях, состоящих из полярных молекул, электролиты подвергаются электролитической диссоцийции, т. е. в большей или меньшей степени распадаются на положительно и отрицательно заряженные ионы — катионы и анноиы. Электролиты, диссоциирующие в растворах не полностью, называются слабыми электролитами. В их растворах устанавливается равновесие между недиссоциированными молекулами и продуктами их диссоциацни — ионами. Например, в водном растворе уксусной кислоты устанавливается равновесие [c.124]

    Известно, что главным фактором, определяющим растворимость различных соединений в паре, является их взаимодействие с молекулами среды. Степень взаимодействия зависит от электролитической характеристики растворяемых соединений. Степень диссоциации растворенного вещества сильно влияет на его ассоциацию с молекулами воды. К тому же диссоциация молекул воды на ионы Н+ и 0Н в надкритическом паре, начиная с плотностей около 0,2— 0,3 г/см , значительно выше, чем у жидкой воды. Имеются спектроскопические доказательства ассоциации воды с растворенными ионами и комплексами при высоких температурах и давлениях, которые достаточно стабильны и поэтому существуют также в надкритическом паре [Fran k Е. U., 1970]. [c.61]

    Данные по спектрам поглощения растворов солей показали, что молярные коэффициенты поглощения при разных длинах волн, рассчитываемые как DJ , не изменяются в широкой области концентраций электролита фх —оптическая плотность при длине волны X, с—концентрация раствора исследуемого электролита). Этот факт не мог быть объяснен теорией электролитической диссоциации Аррениуса, поскольку с уменьшением концентрации электролита должно было происходить увеличение степени диссоциации и, следовательно, изменение спектров поглощения. Полная диссоциация сильного электролита объясняла постоянство молярных коэффициентов поглощения, поскольку при всех концентрациях раствора светопоглощающими частицами оставались одни и те же ионы. Аналогичный характер имеет концентрационная зависимость вращения плоскости поляризации и ряда других свойств растворов сильных электролитов. Теория электролитической диссоциации не может объяснить постоянство теплот нейтрализации хлорной, соляной и других сильных кислот гидроксидами щелочных металлов. Однако это можно объяснить полной диссоциацией реагентов при всех концентрациях и протеканием реакции нейтрализации как взаимодействия ионов Н+ и ОН" по схеме Н+ + ОН = НгО. [c.438]

    Для количественной характеристики соотношения диссоциированных и недиссоциированных молекул электролита при данных условиях пользуются понятием степени электролитической диссоциации (ионизации). Степень элек- юлитической диссоциации а равна отношению числа молекул, распавшихся на ноны, к общему числу молекул электролита, введенных в раствор. Иными словами, а — это доля молекул электролита, распавшихся па ионы. [c.247]

    В настоящее время каустическую соду (МаОН)ихлор в промышленности получают электролизом поваренной соли в электролитических ваннах с ртутным катодом (рис. УПМб) или с диафрагмой (рис. VIII-17) 1[107]. В США 66% продукции получают диафрагменным сгюсобом. В СССР наибольшее применение нашел способ электролиза с ртутным катодом, так как получаемый продукт отличается высокой степенью чистоты. Кро Ме того, данный способ более экономичен в сравнении с диафрагменным. Существенным недостатком способа является образование токсичных ртутьсодержащих отходов. Образовавшуюся амальгаму натрия разлагают на специальных насадках из соединений различных металлов (циркония, вольфрама), а также графита на едкий натр и водород, а ртуть вновь возвращается в камеру электролиза (см. рис. УПМб). [c.252]

    Развитию гипотезы электролитической диссоциации способствовали работы И. А. Каблукова, Нернста, Джонса и др. Особенно большое значение в формировании правильного представления о взаимодействии между частицами в растворах электролитов имели работы Каблукова. Основываясь в значительной степени на обихей теории растворов Менделеева, он утверждал, что ионы могут вступать во взаимодействие с водой, образуя гидраты переменного состава). Каблуков в своей докторской диссертации (1891) писал По нашему, вода, разлагая частицы растворенного тела, входит с ионами в непрочные соединения, по мнению же Аррениуса, ионы свободно двигаются подобно тем отдельным атомам, которые происходят при диссоциации молекулы галоидов при высокой температуре . Дальнейшее развитие науки полностью подтвердило правильность этого вывода И. А. Каблукова. [c.382]


Смотреть страницы где упоминается термин Электролитическая степень: [c.7]    [c.80]    [c.127]    [c.176]    [c.248]    [c.167]    [c.432]   
Курс химии Часть 1 (1972) -- [ c.197 ]

Аналитическая химия (1963) -- [ c.23 ]




ПОИСК







© 2024 chem21.info Реклама на сайте