Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводы также Моносахариды производные

    Практически чаще всего приходится идентифицировать свободные моносахариды, полученные синтетическим путем, выделенные из биологических объектов или образовавшиеся в результате гидролиза гликозидов, олиго- и полисахаридов, а также метилированные моносахариды, образующиеся в процессе установления строения разнообразных углеводов методом метилирования. Поскольку получение тех и других соединений в кристаллическом состоянии сопряжено с рядом трудностей, для идентификации очень часто применяют превращение их в производные, которые получаются с хорошими выходами и легко кристаллизуются желательно, чтобы моносахарид можно было регенерировать из производного без изменений в его структуре. При работе с малыми количествами веществ важное значение имеет увеличение молекулярного веса вещества, достигаемое введением в молекулу моносахарида тяжелых заместителей. [c.413]


    Эти два правила, сформулированные Хздсоном, несмотря на серьезные исключения, которые имеют место для некоторых производных, играют важную роль при установлении конфигурации гликозидного центра, а также и строения всей остальной части моносахаридов. Действительно, поскольку парциальное вращение углеродного атома С( ) практически не вависит от вращения всей остальной части молекулы, то, вычисляя это вращение (величину А) из экспериментальных данных, полученных для любого неизвестного ранее производного сахара, и сравнивая его с вращением самого сахара или какого-либо известного его производного, мы можем сделать заключение о конфигурации гликозидного центра у этого Производного, если конфигурация гликозидного центра самого сахара известна. Наиболее серьезные отклонения, иногда делающие вовсе невозможными подобного рода определения, связаны с влиянием заместителей у С(2) и конфигурации у этого углеродного атома в этом случае парциальное вращение у С(1)зависит от конфигурации у С(2> так, например, оно различно для глюкозы и углеводов с той же конфигурацией у С(2>, с одной стороны, и маннозы и ее аналогов, с другой. Наряду с этим, поскольку парциальное вращение всей остальной части моносахарида не зависит в первом приближении от вращения гликозидного атома, то, сравнивая величины В, полученные из экспериментальны-х данных для какого-либо производного сахара (в том числе для дисахаридов олигосахаридов), с известной величиной В определенного моносахарида, можно сделать заключение о строении и конфигурации исследуемого производного. [c.49]

    В четвертом издании сохранены методические принципы и классификация по структуре углеродного скелета. Внесены некоторые изменения в последовательность изложения так, в I части рассматриваются не только ациклические, но и алициклические углеводороды, а затем их производные. Целесообразность изучения особенностей образования карбоциклов, теории напряжения, конформаций циклогексанового кольца, геометрической изомерии замещенных циклов и т. п. до рассмотрения ангидридов дикарбо-новых кислот, циклических форм моносахаридов, а также циклических эфиров и амидов, соответственно, гидрокси- и аминокислот и т. п. очевидна , а свойства функциональных групп в ациклических и алициклическнх соединениях достаточно сходны. Во II части описаны ароматические карбоциклы (арены) и их производные. Это дает возможность более четко выделить особенности ароматической группировки бензольного кольца и ее влияния на связанные с ней функциональные группы. Амиды карбоновых кислот рассматриваются в гл. XII в сопоставлении с аминокислотами, пептидами, белками. После углеводов выделена самостоятельная гл. X — Терпены, каротиноиды и стероиды. В гл. VII раздел о жирах дополнен общими представлениями о липидах и, в частности, характеристикой фосфатидов. В книге расширены представления о способах разрыва ковалентных связей, о механизмах реакций замещения и присоединения. [c.4]


    К углеводам обычно относят также многоатомные спирты, производные моносахаридов арабит, сорбит, маннит, инозит и др. [c.37]

    МОНОСАХАРИДЫ, углеводы, представляющие собой по-лигидроксиальдегиды (альдозы) и полигндроксикетоны (кетозы) общей ф-лы С Н2,0 (я = 3-9), в к-рых каждый атом С (кроме карбонильного) связан с группой ОН, и производные этих соед., содержащие разл. др. функц. группы, а также атом Н вместо одного или иеск. гидроксилов. [c.136]

    Биологическая роль. Ф-ции углеводов в живых организмах чрезвычайно многообразны. В растениях моносахариды являются первичными продуктами фотосинтеза и служат исходными соед. для биосинтеза гликозидов и полисахаридов, а также др. классов в-в (аминокислот, жирных к-т, фенолов и др.). Эти превращения осуществляются ферментами, субстратами для к-рых служат, как правило, богатые энергией фос-форилир. производные сахаров, гл. обр. нуклеозиддифосфат-сахара. [c.23]

    Исследование продуктов гидролиза метилированного полисахарида. Гидролизаты метилированных полисахаридов представляют собой смесь углеводов со свободным гликозидным гидроксилом и различной степенью замещения остальных гидроксилов мето-ксильными группами. К числу их относятся метилированные производные с одной свободной гидроксильной группой, с двумя свободными гидроксильными группами и полностью метилированные. Возможно также присутствие в гидролизатах моносахаридов, не имеющих метоксильных групп. Последнее наблюдается в тех случаях, когда все гидроксильные группы монозпого остатка глико-зидно связаны с другими монозами или этерифицированы. [c.94]

    Полисахариды - высокомолекулярные углеводы, представляющие собой продукты поликонденсации моносахаридов или их производных. По химической природе полисахариды следует рассматривать как полигликози-ды. При этом каждое звено моносахарида связано гликозидными связями с предыдущим и последующим звеньями. Для связи с последующим звеном предоставляется гликозидная гидроксигруппа, а для связи с предыдущим звеном - спиртовая (гликозная) гидроксигруппа, чаще всего у атомов или С . В полисахаридах растительного происхождения в основном образуются 1,4- или 1,6-гликозидные связи, а в полисахаридах животного происхождения кроме этих связей образуются также 1,3- и 1,2-гликозидные связи. На конце молекулы часто находится восстанавливающий остаток моносахарида, но поскольку его доля по отношению ко всей молекуле очень мала, то полисахариды проявляют очень слабые восстанавливающие свойства. [c.494]

    Как уже отмечалось ранее, общей эмпирической формулой углеводов является Сп(Н20)п. Для большинства важнейших моносахаридов п равняется пяти или шести, и они имеют одинаковые химические брутто-формулы С5Н10О5 или СбН 20б. Моносахариды являются либо полиоксиальдегидами или полиоксикетонами, либо их производными. Поэтому они подразделяются на альдозы и кетозы, а также, в зависимости от значения п, - на пентозы и гексозы. Поскольку альдозы и кетозы могут быть как пентозами, так и гексозами, принято эти термины объединять. Так, например, О-глюкоза является альдогексозой, а 0-фруктоза - кетогексозой. [c.62]

    Реакция углеводов с иодметилатом трифенилфосфита. Новый метод синтеза дезоксисахаров, также основанный на восстановлении галоидпро-изводных углеводов, разработан недавно Кочетковым и Усовым В отличие от предыдущего метода для получения галоидпроизводных используется прямое замещение на галоид свободных гидроксильных групп соответствующим образом защищенного производного моносахарида под действием галоидсодержащих комплексов трифенилфосфита, например иодметилата (СвН.,0)зР- Hgl. Этот энергичный реагент позволяет замещать на атом иода как первичные, так и вторичные гидроксильные группы, и поэтому указанным методом можно в принципе вводить дезоксизвено вместо любой гидроксильной группы моносахарида. [c.260]

    Несмотря на бурное развитие физико-химических методов, химические методы установления строения моносахаридов не утратили своего значения и постоянно используются при изучении новых, неизвестных ранее моносахаридов или их производных. Среди этих методов особое значение имеют восстановление моносахаридов в полиолы и другие реакции, ведущие к ациклическим структурам, а также деструкция углеводов под действием йодной кислоты и тетраацетата свинца. Перевод моносахарида или его производного в полиол существенно упрощает решение многих вопросов, касающихся строения, поскольку дает производные, неспособные к таутомерным превращениям. [c.627]

    ГЛЮКОЗА eHijOs, мол. в. 180,16— моносахарид, одна из восьми изомерных альдогексоз. Г. в виде D-формы (декстроза, виноградный сахар) является самым распространенным углеводом. D-Г. (обычно ее называют просто Г.) встречается в свободном виде и в виде олигосахаридов (тростниковый сахар, молочный сахар), полисахаридов (крах.нал, гликоген, целлюлоза, декстран), гликозидов и др. производных. В свободно виде D-Г. содержится в плодах, цветах и др. органах растений, а также в животных тканях (в крови, мозгу и др.). D-r. является важнейшим источником энергии в организме животных и микроорганизмов (см. Гликолиз). Как и др. моносахариды, D-Г. образует носк. форм. Кристаллич. D-Г. получена в двух формах a-D-Г. (I) и -D-Г. (II). a-D-Г., т. пл. 146°, fa д = -М 12,2° (в воде), кристаллизуется из воды в виде моногидрата с т. пл. 83°. -D-Г. получают кристаллизацией D-Г. из пиридина и нек-рых др. растворителей,т.пл. 148—150°, [ад]=- -18,9° (в воде), В вод- [c.489]


    Общие особенности обмена, характерные для зеленых растений, являются причиной того, что основным дыхательным материалом, используемым их тканями, служат углеводы. Это утверждение справедливо по отношению ко всем без исключения моносахаридам и полисахаридам I порядка, а также к ряду по-лиоз II порядка (крахмал, инулин, гемицеллюлозы). Полимерные формы углеводов, как правило, используются в дыхании после предварительного их расщепления гидролитическим или фосфоролитическим путем. При фосфоролизе крахмала образуется, как известно, фосфорный эфир глюкозы (глюкозо-1-фосфат), т. е. соединение весьма существенно подготовленное к использованию гликолитическим путем, по сравнению со свободной гексозой. Помимо собственно углеводов, субстратом дыхания растительной клетки могут служить многочисленные производные последних, например, глюкозиды, пектиновые вещества. Окислительным превращениям названных соединений должно предшествовать их гидролитическое расщепление. [c.275]

    Большую группу веществ — производных углеводов — составляют гете-роглюкозиды. В олигосахаридах и в полисахаридах моносахариды соединены друг с другом глюкозидной связью, В гетероглюкозидах также имеется глюкозидная связь, но она направлена от альдегидной или кетонной [c.79]


Смотреть страницы где упоминается термин Углеводы также Моносахариды производные: [c.293]    [c.602]    [c.225]    [c.265]    [c.2]    [c.412]    [c.8]    [c.89]    [c.152]    [c.2]    [c.99]    [c.529]    [c.8]    [c.53]    [c.71]    [c.48]   
Начала органической химии Книга первая (1969) -- [ c.457 ]




ПОИСК





Смотрите так же термины и статьи:

Моносахариды



© 2025 chem21.info Реклама на сайте