Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионизация атомов также Потенциал ионизации

    В качестве примера выясним, к какому из атомов перейдет электрон при образовании гидрида лития LiH. Потенциал ионизации лития равен 124, а энергия его сродства к электрону составляет 19 ккал/-г-атом, тогда 1и + Li =124+19=143 ккал/г-атом. Для водорода / =313, а Ен= 7 ккал/г-атом, т. е. соответствующая сумма равна 330 ккал/г-атом. Это значит, что электроотрицательность водорода намного больше, чем лития и, следовательно, в гидриде лития присутствуют ионы Li+ и Н". Понятие электроотрицательности нужно для приближенной оценки прочности связи. Так, в сталеплавильных шлаках наряду с другими элементами присутствуют кальций, железо, кислород, сера. Электроотрицательность кальция равна 1, железа около 1,6, кислорода 3 и серы 2,5. Отсюда следует, что связь кальция с кислородом и серой сильнее, чем их связь с железом, а также и то, что окись кальция прочнее сульфида кальция. [c.299]


    Положение атомов примеси в кристалле может быть различным. В одних случаях такой атом (или ион) заменяет в одном из узлов решетки атом (или ион) основного вещества примеси замещения)-, в других — атомы (или ионы) примеси размещаются между,узлами решетки примеси внедрения). К примесям причисляют также атомы или ионы одного из элементов, содержащихся в данном соединении, при избыточном содержании их по сравнению со стехиометрическим составом. Следует заметить, что энергия, необходимая для отделения электрона от атомов примесей в кристалле (в среде с высокой диэлектрической постоянной), нередко бывает в десятки раз меньше, чем потенциал ионизации этих атомов в свободном состоянии. Для характеристики полупроводников пользуются также величиной Е — работой выхода электрона (см. 50). [c.147]

    Атом бериллия под периферийными электронами имеет также оболочку, характерную для наружного энергетического уровня инертного газа, но в отличие от других элементов главной подгруппы это гелиевая оболочка из двух s-электронов. Такое строение определило малый объем атома бериллия и его иона, недостаточную, экранизацию внешних электронов и связанные с этим характерные особенности бериллия (например, большую величину потенциала ионизации), отличающие его от других элементов главной под- [c.57]

    Как же можно объяснить то, что один из ионов предпочтительнее, хоТя они оба являются вторичными Ион I представляет собой не просто вторичный карбониевый ион это аллильный карбониевый ион, поскольку атом углерода, несущий положительный заряд, связан с атомом углерода двойной связи. Энергии диссоциации связей (разд. 6.21) показывают, что аллильные радикалы необычайно устойчивы. Потенциал ионизации [188 ккал (787,07-10 Дж)1 аллильного радикала позволяет вычислить, что аллильный карбониевый ион также необычайно устойчив на 67 ккал (280,52-10 Дж) устойчивее метильного карбониевого иона и почти так же устойчив, как третичный бутильный карбониевый ион. Теперь можно расширить ряд, приведенный в разд. 5.19. [c.246]

    Закономерности в изменении энергий ионизации. Энергия ионизации является очень важной характеристикой атомов. Как мы увидим в дальнейшем, от нее в значительной степени зависят характер и прочность химической связи. От энергии ионизации зависят также восстановительные свойства атомов, поскольку чем меньше ионизационный потенциал, тем легче атом отдает электрон. [c.74]


    В наружном уровне содержится три электрона, расположенных на 3s- и Зр-подуровнях (3s 3p в невозбужденном состоянии р-электрон неспаренный. Однако соединения алюминия, где он одновалентен, очень неустойчивы. Для алюминия более характерна степень окисления -(-З поскольку для возбуждения атома алюминия, т. е. для перевода одного электрона из 3s- в Зр-сос-тояние, нужно затратить небольшое количество энергии, которое полностью перекрывается энергией образования химических связей. Потенциал ионизации /1 алюминия (свободного атома) равен 5,98 В (небольшой) величины сродства к электрону (0,52 эВ) и электроотрицательность (1,5) также малы. Следовательно, алюминий, являясь активным металлом, будет в реакции проявлять только восстановительные свойства, его атом отдает [c.144]

    Особенности химии хлора. Второй типический элемент VII группы — хлор — характеризуется меньшей неметаллической активностью по сравнению с фтором. Обусловлено это уменьшением потенциала ионизации и ОЭО, а также возрастанием атомного радиуса и энтальпии диссоциации молекул на атомы (см. выше). Большая прочность молекул С1а по сравнению с молекулами Ра объясняется не только эффектом обратного экранирования в атомах фтора, приводящим к ослаблению связи в его молекулах. В молекулах хлора имеет место дополнительное л-связывание за счет /7-электронов и -орбиталей. л-Связывание возникает по донорно-акцепторному механизму, когда каждый атом хлора одновременно является и донором и акцептором электронной пары (дативная связь). В рамках метода ВС дополнительное л-связывание можно представить схемой  [c.358]

    Неэмпирический расчет молекулы сероводорода был проведен только в одноцентровом приближении [4]. Одноцентровые орбиты представлены в виде линейной комбинации атомных орбит, отнесенных к атому серы. При этом предполагается, что электроны атомов водорода также оккупируют одноцентровые орбиты. Одноцентровое приближение значительно упрощает расчет, однако только в некоторых случаях оно дает вполне удовлетворительные результаты. Результаты расчета иллюстрируются следующими цифрами длина связи S—Н 2,509 (2,525 ), валентный угол 89°24 (92°13), дипольный момент 0,6789 (0,362), потенциал ионизации 0,3506 (0,384), полная энергия 397,5891 (—400, 81) 14]. Все величины даны в атомных единицах. Потенциал ионизации определен не как разность энергий нейтральной и ионизированной молекулы [14], а как энергия одной из внешних орбит. Данные по энергии диссоциации не приводятся, но можно ожидать, что они дали бы значительное расхождение с опытом. [c.238]

    Энергия, которую надо затратить для отрыва электрона от нейтрального атома—энергия ионизации,—легко может быть определена, если известно напряжение поля в вольтах, т. е. потенциал ионизации, при котором происходит ионизация атомов. Энергия, выделяющаяся при присоединении электрона к нейтральному атому или иону, оценивается как сродство к электрону и также является для атома, а соответственно, и для иона характерной величиной. [c.60]

    К примесям причисляют также атомы или ионы одного из элементов, содержащихся в данном соединении, при избыточном содержании их по сравнению со стехиометрическим составом. Следует заметить, что энергия, необходимая для отделения электрона от атомов примесей в кристалле (в среде с высокой диэлектрической постоянной), нередко бывает в десятки раз меньше, чем потенциал ионизации этих атом[ в в свободном состоянии. Для характеристики полупроводников пользуются также величиной Е— работой выхода электрона (см. 50). [c.139]

    Так, если в трубке имеются атомы водорода, то регистрируемый гальванометром ток, возникающий благодаря попаданию электронов на пластину, не изменится до тех пор, пока ускоряющий потенциал не достигнет 10,2 В. При такой ускоряющей разности потенциалов электроны при прохождении поля между нитью накаливания н сеткой приобретают за счет поля точно такое количество энергии, которое необходимо, чтобы перевести атом водорода из нормального состояния в первое возбужденное состояние, что связано с изменением квантового числа от п=1 до п=2. При этом наблюдается падение тока в цепи, в которую включена пластина. Напряжение, равное 10,2 В, называется критическим напряжением или критическим потенциалом для атомарного водорода. Можно также наблюдать и другие критические потенциалы, соответствующие другим возбужденным состояниям, причем самый высокий потенциал равен 13,60 В. Это критическое напряжение (13,60 В) соответствует энергии 13,60 эВ, необходимой для полного отделения электрона от атома водорода иными словами, оно соответствует энергии, необходимой для превращения атома нормального во дорода в протон и электрон, т. е. для удаления электрона из него. Напряжение 13,60 В называется потенциалом ионизации атома водорода, а количество энергии 13,60 эВ называется энергией ионизации атома водорода. [c.124]


    Нейтральный атом Р. нмеет конфигурацию валентных электронов 7s , аналогичную конфигурации других щелочноземельных металлов. По химич. свойствам Р. весьма сходен с барием, но еще более активен. Энергия ионизации (ав) Ra Ra+ Ra + соответственно равна 5,277 и 10, 144. Расчетные значения потенциала выделения Р. из р-ров его солей —1,718 в по отношению к нормальному каломельному электроду. Единственное устойчивое окислительное состояние Р. 2 было экспериментально подтверждено анализом галогенидов, а также данными по изучению диффузии и подвижности ионов. Рентгенографич. изучение крис- [c.218]

    Не заменить на атом Хе (потенциал ионизации 12,1 эВ) или Кг (потенциал ионизации 13,4 эВ), то орбитали будут перекрываться эффективно, и образуются устойчивые линейные молекулы Хер2 и Кгр2 (см. также задачу 10.6). [c.173]

    Вообще возможно также и присоединение дополнительного электрона к любому атому, иону или молекуле. Энергию, которая выдг-ляхтся при этом процессе, называют сродством к электрону соответствующего атома, иона или молекулы и обозначают обычно через А. Следует отметить, что знак сродства по условию противоположен знаку потенциала ионизации, и это определение сродства к электрону является настолько установившимся, что его следует принять таким, каким оно дано. Отрицательное сродство к электрону все же известно — это наблюдается тогда, когда рассматриваемые частицы (атомы, молекулы и т. д.) не хотят дополнительного электрона, а их вынуждают принять его. Но наиболее интересны те случаи, когда сродство к электрону положительно. [c.48]

    Обычно в рядах, таких, как Н О, HjS, HgSe и HjTe, потенциал ионизации монотонно падает по мере того, как центральный атом становится менее электроотрицательным. Это несправедливо для ряда (СНз)зХ,гдеХ = К, Р, As, Sb [396]. В ряду КНз.РНз, АзНз и SbHs потенциал ионизации также меняется очень мало. Поскольку электрон, который удалить легче всего, уходит с орбитали 2йу, некий фактор поддерживает энергию этой орбитали почти на постоянном уровне, хотя энергии атомных орбиталей X монотонно возрастают. Этот фактор—большее смешивание атомных [c.202]

    При этом подразумевается, что электрон отрывается с высшей занятой атомной орбитали (ВЗАО), удаляясь на бесконечное расстояние, и что атом А и образовавшийся ион А находятся в своих основных состояниях. Такой ПИ называют также первым потенциалом ионизации ПИ . Потенциалы ионизации высших порядков ПИ , ПИд и т. д. отвечают дальнейшему последовательному отрыву электронов от образовавшегося иона А . Там, где специально не оговорен порядок, под ПИ понимают первый потенциал ионизации. Для атома с п электронами ПИ > ПИ >. .. ПИ2> ПИ . Сумма всех последовательных ПИ составляет полную электронную энергию атома  [c.38]

    Потенциал ионизации может служить количественной характеристикой прочности связи электрона с атомом. Однако об этом большей частью судят по той работе (энергии), какую необходимо затратить на отрыв электрона йт атома или от иона. Это — энергия ионизации. Она обычно выражается в электронвольтах на одну частицу, а также в килокалориях или килоджоулях на Л/д (Авогадрово число) частиц (т. е. на 1 г-атом) .  [c.28]

    Самопроизвольная передача электрона от металлического атома к атому неметалла в действительности вряд ли осуществляется. Дело в том, что потенциал ионизации первого порядка даже для наиболее активных щелочных металлов больше, чем сродство к электрону типичных электроотрицательных элементов. С этой точки зрения оказывается энергетически невыгодным образование ионной молекулы Na l из элементов, так как первый ионизационный потенциал натрия равен 5,14 В, а сродство к электрону атома хлора — 3,7 эВ (ионизационный потенциал, выраженный в вольтах, численно равен энергии ионизации в электрон-вольтах). Из квантовой механики также следусзт, что полное разделение зарядов с возникновением идеальной ионной связи Ai B никогда не может осуществиться, так как из-за волновых свойств электрона вероятность его нахождения вблизи ядра атома А может быть мала, но отлична от нуля. [c.64]

    Известно, что в полярной молекуле НС1 заряд сдвигается от Н к С1. Этот сдвиг можно было бы связать с большей электроотрицательностью (т. е. большей способностью притягивать электрон) хлора по сравнению с водородом, В самом деле, если любому атому А можно приписать число ха (назовем его электроотрицательностью), которое не зависит от окружения атома А, то естественной мерой ионного характера связи АВ будет абсолютная величина разности ха — Хв электроотрицательностей атомов А VI В. Наша задача, таким образом, состоит в применении экспериментальных данных, которые можно связать с электроотрицательностью. Наиболее естественную величину такого типа представляет собой энергия (А) ионно-ковалентного резонанса (раздел 5.7), поскольку, по определению, А = 0 для чисто ковалентной связи (когда Хл=Хв) и увеличивается при увеличении полярности связи. Полинг (283] на чисто эмпирической основе предложил считать мерой разности ха — Хв величину V AB- Однако, согласно Малликену [259], а также [243а], более подходящей мерой электроотрицательности Ха является величина М=( /2) (/а+ а), где /д —потенциал ионизации, а Еа — электронное сродство атома Л. Удачно, что величина У Аав почти пропорциональна разности величин М для атомов Л и и удовлетворяет соотношению [c.153]

    Потенциалы ионизации, определяемые методом разности задерживающих потенциалов , дают результаты, значительно более близкие к данным, рассчитанным на основании спектроскопических величин, по сравнению с методами, не применяющими моноэнергетические электроны. Это особенно типично для таких молекул, как бензол [633, 965, 1450, 1451], в котором имеются возбужденные состояния иона, близкие к основному [676, 1452]. Тем не менее остается еще ряд проблем, неразрешенных и этим методом [1485], в частности эффективное распределение энергии электронов 0,1 эв неадекватно для всех изучаемых молекул. Не представляется также возможным каждый участок ионизационной кривой приписать отдельному процессу ионизации. Было показано [1835], что в процессах ионизации широко происходит автоионизация. Возможно, что атом при возбуждении двух электронов, будет содержать более чем достаточно энергии для ионизации путем удаления одного из электронов. Такой атом, возбужденный до дискретного энергетического уровня выше первого потенциала ионизации и в области сплошного спектра, характеризуется теми же квантовыми числами и четностью он может участвовать в переходах без излучения в состояния, где он существует как ион и как электрон. Этот эффект иногда называется эффектом Аугера, по аналогии с явлениями, наблюдаемыми для рентгеновских лучей. [c.481]

    В тетрафторэтилене существует возможность стабилизации иона за счет-сопряжения, а следовательно, возможность снижения потенциала ионизации электронов двойной связи. В самом деле для этилена потенциал ионизации составляет 10,51 эв, а для тетрафторэтилена — 10,12 эв. Следует ожидать, что величина указанного эффекта, обусловленного такими стабилизирующими ион -структурами, как СХг = СХ—Р+, будет порядка 1 эв н-а атом фтора. Этот эффект противоположен индукционному влиянию атомов фтора в основном состоянии, обусловливающему- повышение степени связывания электронов и увеличение ионизационного потенциала. Величину данного влияния можно- О ценить, взяв третью часть разности между потенциалами ионизации,трехфтористого азота (13,4 эв) и аммиака (1 0,15Ч9(Э)зр . которая также оказывается порядака 1 эв. Таким [c.292]

    I группы или щелочных металлов Li, Na, К, Rb, s, (Fr), атом которых обладает единственным электроном на s-орбитали уровня, следующего за восьмиэлектронным уровнем атома инертного газа (в отличие от Си, Ag, Au). Химия этих элементов является наиболее простой по сравнению с химией элементов любой другой группы. Здесь также сходство между первым членом группы и родственными элементами значительно больше, хотя исключительно небольшие размеры атома и иона лития приводят к некоторым заметным отличиям в химических свойствах, которые будут подробнее рассмотрены в дальнейшем. Низкий потенциал ионизации (5,39 эе) обусловливает легкое образование иона Li , который существует как таковой в кристаллических солях, например Li l. В растворах ион сильно сольватирован, и в водном растворе его можно представить в виде Li (aq). Литий образует ковалентные связи Li — X. Вблизи точки кипения пар металла лития преимущественно одноатомен, но содержит около 1"/о двухатомных молекул Lig. Такие молекулы были обнаружены по характерному полосатому спектру. Несмотря на то что в первом приближении можно считать, что связь Li — Li обусловлена s—s-нерекрыванием, более подробное изучение свидетельствует о том, что имеется некоторая s—р-гибридизация, Б результате которой связь приобретает на 14 /о р-характер. Энергия связи Li —Li (27 ккал моль) довольно низка, а межатомное расстояние Li — Li равно 2,67 А. Существуют соединения лития, подобные gHgLi и gH-Li, которые проявляют свойства типичных ковалентных соединений, будучи довольно летучими и растворимыми в неполярных растворителях. В настоящее время не только не известны другие степени окисления лития, отличные от -fL но их нельзя ожидать вследствие того, что Li" обладает конфигурацией [c.57]

    Значительно более низкая вероятность образования водородных связей по атому -Н=, чем по карбонильной группе, вытекающая также из данных /8,10/, но до настоящего времени не интерпретированная в литературе, по-видимому, обусловлена различной стерической доступностьв неподеленной электронной пары этих протоноакпепторных центров. В то же время энергия водородных связей =К...Н-0, как можно оценить по величинам подобных систем /8,10/,существенно превышает энергию Н-связей С=0...Н-0-, что следует отнести главным образом за счет более низкого потенциала ионизации а-алектронов атома -Я= по сравнению с атомом кислорода С=0 группы, в соответствии с представлениями /II/. [c.467]

    Электрохимическая коррозия — это взаимодействие металла с коррозионной средой (электролитом), при котором ионизация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном акте и их скорости зависят от величины электродного потенциала. Электрохимическая коррозия протекает только при контакте поверхности металла с электролитом, т. е. с токопроводящей средой (водными растворами солей, кислот, щелочей). Практически поверхность любого металла в ат осфе-ре покрывается тонкой водной пленкой различной толщины в зависимости от температуры и влажности воздуха, а также от температуры металлической поверхности. В этой пленке растворяются содержащиеся в воздухе газы (диоксид углерода, оксиды азота и серы, сероводород и др.) и мелкие частицы (пыль) различных солей, что приводит к образованию электролита. [c.279]


Смотреть страницы где упоминается термин Ионизация атомов также Потенциал ионизации : [c.184]    [c.381]    [c.96]    [c.834]    [c.62]    [c.79]    [c.413]    [c.130]    [c.747]    [c.71]    [c.272]    [c.85]    [c.57]    [c.103]    [c.206]   
Введение в спектральный анализ (1946) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Атом атом потенциалы

Ионизации потенциал атомов

Потенциал ионизации

также Потенциал



© 2025 chem21.info Реклама на сайте