Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Этил аденин производные

    Азотистые агликоны нуклеозидов представлены двумя группами гетероциклов производными пиримидина (урацил, ТИМИН, цитозин) и производными пурина (аденин, гуанин). Пиримидин и пурин функционализирован-ны -МН и ОН-группами, но последний функционал претерпевает таутомерное превращение из гидрокси-формы в соответствующую карбонильную функцию (лактим-лактамная таутомерия) — это равновесие в нейтральной среде сдвинуто в сторону пиридоновых форм. [c.62]


    Мономерными звеньями ДНК и РНК являются остатки нуклеотидов. Нуклеотиды — это фосфорные эфиры нуклеозидов, которые, в свою очередь, построены из остатка углевода — пентозы и гетероциклического основания. В РНК углеводные остатки представлены D-рибозой, в ДНК — 2-1)-дезоксирибозой. Связь между углеводным остатком и гетероциклическим основанием в нуклеозиде осуществляется через атом азота в основании, т. е. с помощью К-гликозидной связи. Таким образом, нуклеозидные остатки в ДНК и РНК относятся к классу N-гликозидов. Как уже отмечалось во Введении, в качестве гетероциклических оснований ДНК содержат два пурина аденин и гуанин — и два пиримидина тимин и цитозин. В РНК вместо тимина содержится урацил. Кроме того, ДНК и РНК обычно содержат так называемые минорные нуклеотидные остатки — производные обычных нуклеотидов по основаниям или углеводному остатку, доля которых в зависимости от вида нуклеиновой кислоты колеблется от десятых процента до десятков процентов. Строение, химическая номенклатура и принятые сейчас сокращенные обозначения нуклеотидов и их компонентов показаны на рис. 2. [c.11]

    Нуклеиновые кислоты, являющиеся основной органической частью ядер клеток, играют главную роль в хранении и передаче генетической информации. Полимерные цепочки нуклеиновых кислот построены из нуклеотидов, которые, состоят из азотистого основания, пентозы и фосфатной группы. Углеводным фрагментом обычно является В-рибоза (в рибонуклеиновых кислотах, сокращенно РНК) или 2-дезокси-В-рибоза (в дезоксирибонуклеиновых кислотах, сокращенно ДНК). Азотистыми основаниями нуклеотидов могут быть производные пурина (соединение 23 в табл. 11) — аденин, гуанин, ксантин и гипоксантин — и производные пиримидина (соединение 30 в табл. И) — урацил, тимин и цитозин. В табл. 60 представлены структурные формулы и нумерация атомов наиболее распространенных пуриновых и пиримидиновых оснований, входящих в состав нуклеотидов. Для краткого обозначения азотистого основания принята система трехбуквенных символов (табл. 60). Эти обозначения, представляющие собой первые три буквы названия соединения, следует употреблять исключительно для обозначения свободных оснований (например, ига — урацил) или их замещенных производных (например, рига — фторурацил). [c.355]

    Показано [161], что аденин с формальдегидом образует метилольное производное и метилен-быс-аденин. Хотя этим соединениям было приписано строение Ne-замещенных, однако строгие доказательства отсутствовали. Левин [162] подробно исследовал эту реакцию. Так как формальдегид взаимодействуете аденозином [161] и рибонуклеиновой кислотой [163—168], нахождение места, по которому он присоединяется к пуриновой части молекулы, представляет в настоящее время значительный интерес с точки зрения биохимии. На основании спектральных данных можно сделать вывод, что продукт реакции аденозина с формальдегидом имеет Ne-оксиметильную структуру. Это вещество устойчиво только в присутствии избытка формальдегида. [c.285]


    Херст и Капсис [44] изучили расщепление различных пуринов под действием горячей щелочи. Оказалось, что аденин, гуанин, гипоксантин и ксантин устойчивы к нагреванию с 1н. раствором едкого натра до 100°. Аденозин в этих условиях распадается с образованием аденина, инозина и 4,5,6-три-аминопиримидина [45]. Альберт и Браун [46] установили, что в отличие от пурина 9-метилпурин расщепляется при обработке горячим раствором 1н. щелочи. При действии щелочи в мягких условиях происходит раскрытие имидазольного цикла в 9-(р-о-рибофуранозил)пурине [47]. Изучено поведение отдельных пуринов в 10 н. растворе едкого натра [46]. Оказалось, что пуриновые соединения более устойчивы к щелочам, чем птеридиновые производные [46]. В какой-то степени это можно, по-видимому, объяснить способностью пуринов образовывать анионы в растворах сильных щелочей, что приводит к стабилизации электронодефицитного пиримидинового цикла. [c.300]

    Все оксипиримидины обнаруживают способность к про-тотропной таутомерии, заключающейся в миграции протона между структурами гидроксидиазина и кетоформы (лактим-лактамная таутомерия), причём для барбитуровой кислоты рентгеноструктурный анализ показ и преобладание трикето-формы (см. выше на примере формулы веронала). Анатогич-ное свойство характерно и для аминопиримидинов. Возможность существования этих производных пиримидина в кето-формах особенно существенна для проявления биологической активности так называемых пиримидиновых оснований нуклеиновых кислот - тгшина, урацила и цитозина, так как только в кето-форме возможно образование сильных водородных связей между остатками оснований в цепях нуклеиновых кислот (ти-мин - аденин и цитозин - гуанин в ДНК, урацил - аденин и цитозин гуанин в РНК)  [c.32]

    Следует отметить, что в процессе биосинтеза пуринов построение колец осуществляется в противоположной последовательности в первую очередь из глицина и производных муравьиной кислоты синтезируется имидазольное кольцо, а затем к нему достраивается пиримидиновое. Образовавшийся при этом гипоксантин далее превращается в другие природные пурины — аденин, гуанин и ксантин. [c.363]

    НИЮ гуанинов по N-7 и аденинов по N-3 [22]. Гликозидная связь таких производных легко гидролизуется, и последующая щелочная обработка отщепляет фосфаты от свободной дезоксирибозы (схема (9) . Гуанин метилируется в 5 раз быстрее, чем аденин, и поэтому этот путь приводит, в основном, к расщеплению по гуанину (0 >А). Эта ситуация легко меняется на обратную, когда достигается сильное расщепление по аденину и слабое по гуанину, при использовании для гидролиза гликозидной связи слабокислых условий, в которых подавляется гидролиз 7-метилгуанозина. По- [c.190]

    Основными фрагментами дезоксирибонуклеиновых кислот (ДНК) являются дезоксирибонуклеотиды, а основными фрагментами рибонуклеиновых кислот (РНК) -рибонуклеотиды (рис.3.36). По аналогии с аминокислотами в протеинах эти фрагменты отличаются только своими боковыми цепями, которые в ДНК в основном состоят из пиримидиновых производных - цитозина и тимина - и пуриновых производных - аденина и гуанина. В РНК присутствуют те же боковые цепи, только основание тимин заменено на урацил (рис.3.37). Кроме этих основных фрагментов нуклеиновых кислот [c.147]

    Производные пурина — это аденин и гуанин, производные пиримидина — тимин, цитозин, урацил (обычно основания обознача- [c.349]

    Нуклеиновые кислоты вместе с белками в очень тесной, неразрывной связи с ними являются носителями Жизни, входят в состав всех живых клеток. Вперэые они выделены из клеточных ядер в 1869 г. В настоящее время изучены их состав, строение и функции. Существую два вида нуклеиновых кислот — рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК), отличающиеся друг от друга строением углевода рибозы. В состав обоих кислот входят азотистые основания (урацил, тимин, гуанин, цитозин и аденин, производные пиримидина и пурина, связанные ковалентной связью с полуацетальный гидроксилом в положении 2 циклической формы углевода — рибозы (РНК) или 4-дезоксирибозы (ДНК). При этом пара азотистое основание + углевод образует так называемые нуклеозиды  [c.728]

    Однако с позиций ионообменной хроматографии самое существенное состоит в том, что соотношение между значениями рК при этом изменяется мало. Иными словами, в слабокислой среде производные цитозина характеризуются наибольшим средним положительным зарядом (т. е. наибольшей долей положительно заряженных молекул). Положительный заряд производных аденина меньше, производных гуанина — еще меньше, а урацил или тимин и их соответствующпе нуклеозиды остаются незаряженными. [c.317]

    В прир. источниках встречаются т. наз. псевдовитамины Ви, к-рые вместо 5,6-диметилбензимидазола содержат в молекуле др. пуриновые основания (аденин, 2-метил-аденин или их дезаминированные производные). Эти в-ва-ростовые факторы для нек-рых микроорганизмов. Они ие обладают витаминной активностью для человека и животных. [c.384]

    Спаривание оснований осуществляется по следующему механизму аденин образует пары с тимином (в молекуле РНК - с урацилом) за счет двух водородных связей, а гуанин - с цитозином за счет трех водородных связей (модель Уотсона-Крика). Д. Во и А. Рич [90] установили, что при совместной кристаллизации обычных мономерных производных Ade и Ura наблюдается образование пар A-U, однако они никогда не являются уотсон-криковскими. В этих комплексах роль акцептора водородной связи играет азот N(7) имидазольной части аде-нинового кольца. Эта структура известна как хугстеновская, или ими-дазольная. Расчет методом молекулярных орбиталей, выполненный Пульманом и соавторами [91] дает для пары аденин-тимин следующую последовательность структур в порядке убывания их стабильности имидазольная структура, обратная имидазольная структура, уотсон-криковская структура. В случае G- пар имеет место только уотсон- [c.235]


    Биосинтез высокознергегическнх соединений является способом запасания энергии в химически доступной форме. Важную роль в этом играют аденозинфосфор-ные кислоты - производные нуклеозида - аденозина. Аденозин представляет собой К-гликозид В-рибозы и аденина, относящегося к пуриновым основаниям. С рнбофура-нозным циклом связаны остатки ортофосфорной или полифосфорных кислот. На схеме 11.18 приведены структурные формулы аденозина и аденозин-5-моно-, ди- и трифос-форных кислот (АМФ, АДФ и АТФ соответственно). Синтез аденозинтрифосфата используется живыми организмами для накопления энергии [c.326]

    Многочисленные дебаты относительно корректности этой структуры касались преимущественно модели водородных связей между комплиментарными парами оснований, аденин-тимин и гуанин-цитозин. Кристаллографические исследования бинарных комплексов подходящих производных этих оснований выявили возможность существования водородных связей, альтернативных использованным Уотсоном и Криком в структурах (29) и (30). Действительно, до 1973 г. обнаружение уотсон-криковских структур было скорее исключением, чем правилом. В 1973 г. Рич и его коллеги получили кристаллы динатриевой соли динуклеозидфосфата гАри. Эта самокомплиментарная молекула существует в кристалле как сегмент правовращающей антипараллельной двойной спирали, содержащей уотсон-криковские водородные связи (см. разд. 22.1.3.4), [c.45]

    Вариант этого метода использован Робинсом с сотр. специально для получения Н-7-гликозилпуриновых нуклеозидов [85]. Имидазольный нуклеозид (39) получен катализируемой кислотой реакцией сплавления и обработан далее цианидом калия, что привело к (40), который восстанавливали до аминонитрила (41). Циклизация последнего с диметоксиметилацетатом с последующим деацетилированием дала 7-(р-й-рибофуранозил) аденин (42) схема (17) . По аналогичной методике получепы также соответствующие гуаннновые производные. [c.92]

    Свою биологическую функцию в живом организме рибофлавин осуществляет в виде флавиновых нуклеотидных коферментов — фосфорного эфира рибофлавина (ФМН) и производного этого эфира — соединения с адени-ловой кислотой, (3-N(9) -аденин-Б-рибофуранозил-5 -фосфатом—флавин-адениндинуклеогида (ФАД) кроме того, 8а-производные рибофлавина образуют коферменты 8а-гистидил-ФАД и 8а-цистеинил-ФАД. В свою очередь флавиннуклеотиды являются простетической активной группой флавиновых ферментов и осуществляют окислительную биокаталитическую функцию только в соединении с апоферментом — белковой составной частью молекулы ферментов. [c.548]

    Поскольку встречающиеся в природе пурины представляют собой амино-и/или кислородсодержащие производные, нет ничего удивительного в том, что большинство работ по химии пуринов имеет отношение к таким производным, и вследствие этого примерам простых реакций, таких, как в других главах, где они приведены как типичные, будет уделено ограниченное внимание. Изучение пуринов началось с интереса к встречающимся в природе производным, поэтому используется в основном тривиальная номенклатура. Нуклеозиды представляют собой производные сахаров [в основном 9-(рибозиды) или 9-(2 -дезок-сирибозиды)] и пуриновых (или пиримидиновых) оснований. Например, адено-зин представляет собой 9-(рибозид) аденина, который, в свою очередь, имеет тривиальное название 6-аминопурин, а нуклеотид — это 5 -фосфат (или ди-, или трифосфат) нуклеозида, например, аденозин-5 -трифосфат (АТФ). [c.576]

    Присутствие в молекуле пурина кислородсодержащей функциональной группы не оказывает особого влияния на основность пурина так, величина рКа гипоксантина равна 2,0. Наличие аминогрупп повышает основность пуринового производного (рЛ , аденина равна 4,2), а наличие оксогрупп уменьшает основность (рА гуанина равна 3,3). Расположение протона именно в пятичленном гетероцикле в кристаллической протонной соли гуанина определено методом рентгеноструктурного анализа это прекрасно иллюстрирует чрезвычайно тонкое взаимодействие заместителей и кольцевых гетероатомов, и, хотя 2-амино-1руппа повышает основность пурина, это вовсе не означает, что протонирование обязательно пойдет по соседнему положению Му). [c.579]

    Для аденинов очень удобно использовать 9-т/ е/я-бутилдиметилсилилокси-метильную защитную группу, поскольку она способствует хорошей растворимости в органических растворителях. Введение этой группы происходит поста-дийно путем первоначального превращения аденина в 9-гидроксиметильное производное при взаимодействии с формальдегидом и основанием и последующего 0-силилирования [11]. [c.581]

    Позднее Роблин и другие [381] действием азотистой кислоты на соответствующие 5,6-диаминопиримидины синтезировали соединения этого ряда, аналогичные по структуре пуриновым производным—гуанину, аденину, ксантину и гипоксантину указанные вещества обладают бактериостатическими свойствами in vitro. [c.248]

    Миллер [301] нашел, что из зерна может быть выделен активный ростовой фактор, имеющий пуриновую структуру, точное строение которого еще не установлено. Из сливы экстракцией извлечено производное 6-К-замещенного аденина, которое стимулирует деление клеток [302]. Похожее пуриновое производное (возможно то же самое) выделено из Zea mays [302, 303]. Это вещество было названо зеатином [303] показано [303, 304], что оно может встречаться в природе либо в виде свободного основания, либо как составная часть нуклео- [c.140]

    В 1894 г. Крюгер [1], изучая алкилирование аденина хлористым бензилом в присутствии едкого кали, получил монобензиладенин неизвестного строения. В отсутствие щелочи было выделено в виде хлорида дибензильное производное. В настоящее время строение этих бензиладенинов установлено с помощью встречного синтеза [2—4]. Дибензильное производное охарактеризовано ультрафиолетовым спектром [2]. Крюгер [1] также нашел, что свинцовая соль аденина дает с иодистым метилом монометильное производное, однако строение его он также не установил. Метилированием гипоксантина им был получен диметилгипоксантин, которому была приписана структура I. Эта старая работа никем не была проверена. [c.288]


Смотреть страницы где упоминается термин Этил аденин производные: [c.135]    [c.135]    [c.49]    [c.480]    [c.248]    [c.11]    [c.155]    [c.343]    [c.184]    [c.84]    [c.582]    [c.49]    [c.156]    [c.563]    [c.193]    [c.276]    [c.291]    [c.193]    [c.276]    [c.291]   
Органическая химия нуклеиновых кислот (1970) -- [ c.225 , c.226 ]




ПОИСК





Смотрите так же термины и статьи:

Аденин

Аденин производные

Этил аденин



© 2025 chem21.info Реклама на сайте