Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Д Реакции элиминирования под действием нуклеофилов

    Аналогично реакции нуклеофильного замещения N2, реакция элиминирования у первичных алкилгалогенидов, названная 2, является бимолекулярном, и ее скорость также зависит как от концентрации субстрата, так и от концентрации реагента который действует в данном случае не как нуклеофил, а как основание. [c.106]

    В сульфит-ионе атом серы является нуклеофильным центром, поэтому, этот реагент находит широкое применение для синтеза сульфокислот с помощью реакций нуклеофильного замещения и присоединения к кратным связям. Алкилгалогениды и эпоксиды легко реагируют с сульфит-ионом (уравнения 15 [2] и 16 [16]). В этих реакциях в качестве нуклеофила выступает сульфит-ион, а не бисульфит-ион, даже в тех условиях, когда бисульфит преобладает [9, 17]. Обычные пространственные ограничения для реакций типа 5м2 действуют и в этих превращениях эти реакции не удается провести при попытке замещения у третичного атома углерода вместо реакции замещения происходит элиминирование. Однако с трифенилметанолом и аналогичными соединениями, из которых образуются карбокатионы, не способные к элиминированию, получаются сульфонаты [9]. Сульфиты выступают также в качестве нуклеофилов и в реакциях замещения с активированными ароматическими субстратами, например при замещении фторид-иона в 2,4-динитрофторбензоле [9]. [c.514]


    Увеличение основности и снижение поляризуемости основания-нуклеофила также способствуют реакциям элиминирования. Как мы видели выше, 2-бромпропан под действием этоксид-иона преимущественно подвергается элиминированию, а в реакции с ацетат-ионом реагирует только по схеме 5д,2. [c.619]

    Если условия реакции являются неблагоприятными для замещения по механизму Sn2, как в вышеприведенном примере, то можно ожидать, что основность донора электронной пары определит направление реакции между атакующей группой и субстратом. Это означает, что в случае реакции гидроксид-иона с пг/ т-бутилхлоридом следует ожидать, что гидроксид-ион будет действовать как основание, а не как нуклеофил. Атака гидроксид-иона будет направлена на водород, а пе на атом углерода, связанный с хлором. Конечным результатом этой атаки па атом водорода и будет -элиминирование, а его продуктом будет алкен. [c.216]

    Можно ли хотя бы мысленно представить конструкцию протонного насоса и ориентированной АТРазы, приводимой в действие потоком электронов Мы рассмотрим только одну чисто гипотетическую модель. Чтобы нуклеофил V мог образовать богатую энергией связь Р прямой атакой атома фосфора Р , необходимо удалить ион ОН . При pH 7 вероятность такой реакции очень мала, но она может стать заметной при более низких pH. Таким образом, мы можем себе представить, что функция ориентированной АТРазы состоит в том, чтобы захватывать протон и специфически удерживать его вблизи атома кислорода, который должен быть элиминирован [уравнение (10-20)]. А как можно направить протон в точно нужное место Вероятно, он мог бы проходить по каналу в мембране, который и доставляет его в требуемый участок. Пожалуй, еще легче себе представить, что протон [c.420]

    Реакции альдольно-кротоновой конденсации. Эти реакции протекают с альдегидами и кетонами, у которых атом углерода, непосредственно связанный с карбонильной группой, имеет хотя бы один атом водорода. Для понимания механизма реакции необходимо рассмотреть влияние карбонильной группы на алифатический радикал. Электроноакцепторная карбонильная группа вызывает поляризацию связей с соседними атомами, в частности связи С—Н у а-атома углерода. Атом водорода становится подвижным, возникает СН-кислот-ный центр (сравните с механизмом реакции элиминирования в галогеналканах, см. 4.4.3). За счет этого кислотного центра оксосоединение может при действии сильных оснований отщеплять протон и превращаться в карбанион. Отрицательный заряд в образовавшемся карбанионе делокализован при участии альдегидной или кетонной группы. Анион представляет собой сильный нуклеофил и реагирует со второй молекулой карбонильного соединения по механизму нуклеофильного присоединения. [c.242]


    Реагент V или растворитель может действовать и как нуклеофил по отношению к атому углерода, и как основание по отношению к атому водорода при соседнем углеродном атоме. Поэтому реакции нуклеофильного замеш еиия и элиминирования конкурируют друг с другом. В мономолекулярном процессе -Е1-мехаиизм конкурирует с 5 2,Д-мехаиизмом замеш ершя. Действительно, первая стадия в механизме Е совпадает с первой ста-дией механизма 5 Д и заключается в ионизации субстрата с образованием карбокатнона. Во второй стадии 1-ироцесса растворитель [c.834]

    Авторы этой работы предлагают следующую схему превращений. На первой стадии реакции происходит 0-нуклеофильная атака по атому углерода интернальной кратной связи с генерацией карбаниона 155, стабилизация которого протекает за счет элиминирования аниона фтора из группы F3 и образования олефина 156. Внутримолекулярная нуклеофильная циклизация за счет действия N-нуклеофила по атому углерода терминальной кратной связи приводит к конечному продукту реакции 154. Однако в случае перфтор-2,4-диметил-гепт-З-ена при проведении реакции в отсутствие триэтиламина происходит образование не гетероцикла 157, а 7-(перфторизопропил)-8-(пентафторэтил)-9,14-бензоазепин-[4,3-Ь]-1,6-бензоазепина 158. Это обусловлено тем обстоятельством, что в получающемся первоначально соединении 157 содержится при кратной связи весьма подвижный атом фтора, который замещается под действием 2-аминофенола, давая соединение 159. В нем происходит под действием 0-нуклеофильного центра циклизация по интернальной кратной связи, приводящая к соединению 158 [174]. [c.116]

    В синтезе простых эфиров по Вильямсону и в его вариантах на скорость и течение реакции, которая может протекать по механизмам типа SnI и Sn2 (см. разд. 3.3.3), влияет структура субстрата, включая природу уходящей группы, а также растворитель и температура. При использовании в качестве нуклеофила этокси-да в этаноле скорость реакции и степень протекания элиминирования обычно меньще в случае сульфонатов, чем для иодидов или бромидов, тогда как сульфонаты обычно подвергаются сольволизу в этаноле быстрее, чем иодиды или бромиды. Конкурирующее элиминирование наиболее выражено в случае вторичных и третичных галогенидов (или сульфонатов) и в меньщей степени в случае простых первичных галогенидов. Разветвление или замещение арильным остатком в -положение галогенида способствует элиминированию, поэтому метод Вильямсона непригоден для этерификации с использованием -арилэтилгалогенидов. Увеличение степени замещения алкоксида связано с увеличением основности и, следовательно, в большей степени способствует элиминированию. Например, 1-бромоктадекан образует при действии трет-бу-токсида калия преимущественно алкен за счет элиминирования и преимущественно эфир путем замещения при использовании более слабого основания метоксида натрия [102]. Кроме того, сульфонаты первичных спиртов, которые при обработке грет-бутоксидом в трет-бутиловом спирте дают почти исключительно продукты замещения, подвергаются более быстрой реакции, сопровождаемой 20% эли- [c.319]

    При исследовании реакций в нитрометане—растворителе с более высокой диэлектрической проницаемостью (около 40), благодаря чему устраняются возмущения, связанные с силами дальнего действия, в 1954 г. были сформулированы два новых принципа. В этой среде третге-бутилбромид вступает в реакции замещения с ионами радиоактивного брома, хлора и нитрит-ионом (все из тетраэтиламмониевых солей), которые могут сопровождаться, а могут и пе сопровождаться элиминированием. Реакции имеют первый кинетический порядок по субстрату и нулевой по замещающим агентам. Наблюдались кинетические солевые эффекты, соответствующие мономолекулярным реакциям, причем все три реакции имели одинаковую скорость при низких концентрациях солей. Тот же субстрат вступает в реакции замещения первого порядка с водой, этанолом и фенолом эти реакции имеют одинаковую скорость при низких концентрациях реагентов, близкую к скорости замещения указанными выше анионами. Очевидно, что скорость всех шести реакций определяется общей стадией ионизации. Однако при повышении концентрации гидроксилсодер кащих реагентов скорость реакции возрастает но линейному закону, т. е. в этом случае в выражении для скорости имеется член второго порядка. Это не означает, что нри высокой концентрации реагентов реакция частично идет по механизму 8ц2, так как наклон кривой скорость — концентрация реагентов, т. е. константа скорости реакции второго порядка, не увеличивается нри повышении силы гидроксилсодержащего нуклеофила. Этот наклон зависит от кислотности нуклеофила. Соотношение скоростей в ряду СвН ОН > НоО > С2Н5ОН составляет 5,5 2 1. Это является следствием общего кислотного катализа при 8 1-замещении в алкилбромидах. Переходное состояние этой реакции имеет вид  [c.389]



Смотреть страницы где упоминается термин Д Реакции элиминирования под действием нуклеофилов: [c.280]    [c.41]    [c.123]    [c.176]    [c.216]    [c.319]    [c.212]    [c.172]    [c.221]    [c.332]   
Смотреть главы в:

Межфазный катализ в органическом синтезе  -> Д Реакции элиминирования под действием нуклеофилов




ПОИСК





Смотрите так же термины и статьи:

Нуклеофил

Элиминирование Элиминирование

Элиминирования реакции



© 2024 chem21.info Реклама на сайте