Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Циклопентан энергия цикла

    Таким образом, приведенные данные показывают определенное сходство во влиянии алкильного заместителя, в частности метильной группы, на легкость разрыва и энергию активации гидрогенолиза С—С-связей кольца в углеводородах ряда циклогептана и циклопентана. Все это привело к предположению [159] о сходстве механизмов гидрогенолиза циклопентанов и циклогептанов на поверхности Pi-катализатора. Рассмотрение на моделях Стюарта — Бриглеба.строения наиболее стабильной конформации циклогептана в форме скошенного кресла (рис. 31) и адсорбции этой конформации на грани Pt (111) [159] подтвердило эту точку зрения. Образование шестичленного переходного состояния (сближение атомов С-1 и С-3 или С-3 и С-5) приводит к изомеризации цикла до шестичленного. Образование пятичленного переходного состояния за счет сближения атомов С-1 и С-5 приводит к деформации молекулы, образованию адсорбированного комплекса, близкого по строению к комплексу, изображенному на рис. 26, т. е. к растяжению и к дальнейшему разрыву одной из связей семичленного цикла. Деформация молекулы циклогептана требует затраты энергии, и, возможно, именно поэтому энергия активации гидрогенолиза циклогептана на 42 кДж/моль выше, чем у циклопентана. [c.157]


    Этот цикл очень сильно напряжен, энергия его напряжения вычислена и указана в табл. 15-2. Оптимальный угол между связями, образуемыми углеродом, равен 109" ( тетраэдрический угол), однако в данном трехчленном цикле углы между связями равны 60°. Циклобутан и циклопентан напряжены меньше, а шестичленные циклы со структурой циклогексана встречаются очень часто. Циклогексан может иметь две различные структуры, называемые конформациями (формами) ванны и кресла (рис. 21-9). Конформация ванны менее устойчива из-за того, что в ней сильно сближены два диаметрально расположенных атома водорода. Сахара и другие вешества, молекулы которых имеют фрагменты, подобные цикло-гексану, почти всегда включают их в форме кресла. [c.285]

    Судя по величинам байеровского напряжения, наименьшей энергией должен был обладать циклопентан, наибольшей — циклопропан и макроциклы. Это качественно более или менее согласовывалось с имевшимися в то время данными, поскольку макроциклы не были известны. Действительно, кольцо циклопропана очень легко размыкается под действием галоидоводородов и брома, легко каталитически гидрируется циклобутан значительно устойчивее циклопентан, как и следовало ожидать, чрезвычайно устойчив, и прочность его цикла напоминает прочность [c.525]

    Кроме углового напряжения в циклических соединениях существует напряжение, связанное с тем, что атомы водорода находятся частично или полностью в заслоненных (см. стр. 510 сл.) положениях в циклопропане, циклобутане и циклопентане каждый атом водорода практически соприкасается с двумя соседними. Для циклопропана к энергии углового напряжения добавляется энергия взаимного отталкивания трех пар атомов водорода. Б циклопропане каждый углерод связан с двумя другими и невалентных взаимодействий атомов углерода друг с другом нет. Иначе обстоит дело в случае циклобутана, где помимо углового напряжения ж энергии взаимодействия четырех пар атомов водорода существует некоторое дополнительное напряжение, связанное со взаимодействием между первым и четвертым атомами углерода, расстояние между которыми равно всего 2,2 А. Теоретический расчет суммы всех напряжений в циклобутане приводит к цифре, которая намного превосходит экспериментальную величину, полученную из термохимических данных. Поэтому в настоящее время принято считать, что -в циклобутане один из атомов цикла несколько выдается над плоскостью трех остальных. Такой выход из плоскости уменьшает общую энергию циклобутана. Напряжение моле- [c.526]


    Нормальный угол между двумя валентностями насыщенного атома углерода (с гибридизацией зр ) равен 109°28. Как установлено Байером в 1885 г., в циклоалканах валентности углерода отклоняются от их нормальной ориентации, вследствие чего возникает напряжение в цикле, энергия молекулы возрастает. В трехчленном кольце циклопропана каждая валентность имеет отклонение от нормального направления на 24°44, в четырехчленном-на 9°44, в циклопентане-на 0°44, в циклогексане-на 5° 16, но молекула циклогексана не является плоской, и в ней отсутствует напряжение. [c.51]

    Не все эти поправки отражают только энергетические эффекты искажения валентных углов. Так, в циклопентане валентные углы практически равны тетраэдрическим, и энергия напряжения относится к отталкиванию между атомами водорода, по необходимости занимающими заслоненное положение относительно друг друга, из-за почти плоскостного строения цикла. [c.171]

    Судя по величинам байеровского напряжения, наименьшей энергией должен был обладать циклопентан, наибольшей — циклопропан и макроциклы. Это качественно более или менее согласовывалось с имевшимися в то время данными, поскольку макроциклы не были известны. Действительно, кольцо циклопропана способно размыкаться под действием галоидоводородов и брома, легко каталитически гидрируется циклобутан значительно устойчивее циклопентан, как и следовало ожидать, чрезвычайно устойчив, и прочность его цикла напоминает прочность обычной парафиновой цепи. Единственным исключением представлялся циклогексан этот цикл устойчив не менее циклопентанового и образуется он в реакциях циклизации, пожалуй, легче всех других. Синтезировать средние циклы (С —Си) оказалось довольно трудной задачей, только циклогептан был получен В. В. Марковниковым сравнительно рано — в 1893 г. Трудность их получения, казалось, подтверждала правильность теории Байера. [c.493]

    Циклопентан. В плоском регулярно построенном циклопентане угол ССС составляет 108°, отклоняясь от нормального тетраэдрического угла всего на 1,5°. Однако для циклопентана, экспериментальная теплота образования которого достаточно хорошо согласуется со значениями, рассчитанными по схемам EAS 33 ММ1 [34] и ММ2 [76], значение ЭНЕК равно 30,1 кДж/моль. Такая энергия напряжения, очевидно, не может быть обусловлена угловым напряжением. Однако в циклопентане, как и в циклобутане, имеются отталкивания между несвязанными С—С- и С—Н-фрагментами и, хотя разницу в энергии заторможенной и заслоненной форм для включения в цикл СНг—СНг группы определить невозможно, все же можно Оценить ее в 10—11 кДж/моль, исходя из энергии напряжения плоского циклопентана, если принять, что единственным источником напряжения является торсионное напряжение. Соответствующий барьер в этане равен 12 кДж/моль, а в пропане 14 кДж/моль отметим, что значения барьера для бутана (20 кДж/моль) нельзя использовать для расчета циклической молекулы, так как в бутане присутствуют скошенные взаимодействия. При переходе от плоской к неплоской конформации напряжение в циклопентане не устраняется, а только ослабевает. [c.117]

    Аналогичная, но менее резко выраженная картина напряжения С-С-связей наблюдается в щпслобутане. Разница между линиями перекрывания (см. рис. 10.1) 5р -орбиталей соседних атомов (пунктирные линии) и линиями, соединяющими ядра атомов (сплошные линии), составляет только 19°. Поэтому из-за напряжения ст-связей циклобутан менее устойчив, чем циклопентан и циклогексан, в которых ст-связи не напряжены. Но он намного устойчивее циклопропана, если речь идет о римыкании цикла. В связи с пониженным перекрыванием связывающих орбиталей в циклопропане и циклобутане энергия С-С-связи в них на 50—40 кДж/моль ниже, чем в алканах, тогда как энергия С-Н-связей такая же, как вторичная С-Н-связь в алканах. [c.324]

    Трех- и четырехчленные циклы сильно напряжены (энергия напряжения для циклопропана 27,6 ккал-моль", циклобутана 26,4 ккал-моль ", циклопентана 6,5 ккал-моль" и циклогексана — 0). У средних циклов напряжение возрастает, не достигая, однако, величины, характерной для циклопропана. Циклопентан и циклогексан не напряжены вследствие неплоского строения. Реакционная способность средних циклов не отличается от реакционной способности соединений с пяти- и щестичленными циклами (теория Ззксе — Мора). [c.199]

    Что касается механизма размыкания пентаметиленового- цикла, то в нашей интерпретации, как и в интерпретации, основанной на секстетно-дублетной модели, имеются существенные затруднения. Принятие сек-стетно-дублетной модели никак не объясняет образования продуктов размыкания разветвленного строения. Мы воздерживаемся от ответа на вопрос о том, почему ненапряженные системы, как циклогексан и другие, не размыкаются с такой же легкостью, как циклопентан, в котором напряжения связей также невелики. Однако в пятичленном цикле, как и в напряженных системах цИклобутана и циклопропана, отсутствует свободное вращение около углеродных связей, и, вследствие этого, ему приписывается дополнительная к байеровскому натяжению энергия противостояния водородных атомов . Мы не вникаем пока в существо и характер этого эффекта и в его влияние на свойства молекул, но отмечаем еще один признак сходства пентаметиленового цикла с напряженными системами циклобутана и циклопропана. [c.260]

    В последние годы (1941 —1950) Б. А. Казанский изучил более глубоко гидрогенолиз пятичленных циклов (циклопентана, метил-, диметил-, триметил-, изопропнл-циклопентанов и эндометиленциклогексана) и установил основные закономерности этого процесса—место расщеп-ления С—С-связи в углеводородах ряда циклопентана и влияние числа и положения заместителей на скорость и направление реакции [156]. Оказалось, что сам циклопентан гидрируется над платинированным углем с наибольшей лёгкостью при 290° и статочном времени контакта выход пентана достигает 90%. Изучение кинетики этой реакции показало, что энергия акти-70 [c.70]


    Выше шла речь об энергиях деформации в цикло-алкаиах, а сейчас этот вопрос будет рассмотрен подробнее. У высших нециклических нормальных алканов теплота сгорания на одну группу СНг составляет —157,5 ккал/моль [30], в то время как у газообразных циклопарафинов она имеет следующие значения циклопропан —166,5 циклобутан —163,8 циклопентан —158,7 циклогексан —157,5 циклогептан —158,2 циклооктан —158,5 и циклононан —158,7 ккал/моль [31]. Поскольку большая величина теплоты сгорания отражает более положительную величину теплоты образования, а следовательно, и более слабую связь в молекуле, эти данные указывают на наличие деформации в трех- и четырехчленных циклах. В пятичленных циклах эта деформация меньше и достигает минимума у. циклогексана, после которого увеличение размера цикла вызывает возрастающую деформацию, по крайней мере до девятичленного цикла. Для дальнейших членов ряда энергия деформации уменьшается, и теплоты сгорания газообразных циклоалканов с 14, 15, 16 и 17 атомами углерода, вероятно, такие же, как и нормальных нециклических алканов [32]. [c.40]

    К тому времени накопилось достаточно данных, противоречащих первоначальной теории Байера. Как уже говорилось, циклогексан не уступает по прочности и легкости образования циклопентану. Далее, судя по теплотам сгорания, рассчитанным на одно метиленовое звено, энергия всех циклов от пятичленного и выше приблизительно одинакова (см. табл. 53 на стр. 503), тогда как по теории Байера она должна все время возрастать. Наконец, были получены некоторые макроциклы, устойчивость которых не отличалась от устойчивости циклогексана или алифатических изологов. Позднее структура циклогексана была подтверждена спектроскопическими данными. Стало ясно, что его достаточно большой цикл изгибается в пространстве, стремясь принять такую форму, в которой углы тетраэдрические или близкие к ним. Относительную трудность получения больших циклов стали связывать с малой вероятностью встречи концевых групп циклизукЗщейся молекулы (эта вероятность уменьшается с увеличением длины цени). [c.494]

    Как сама возможность ргюсматриваемых ниже таутомерных взаимодействий, так и их природа часто связаны с образованием циклов, которые могут оказаться неустойчивыми и преходящими или устойчивыми и существующими, и желательно сначала рассмотреть кратко вопрос о том, какие же факторы в общем определяют легкость образования циклов. Как и многие-другие типы реакций, циклизация может оказаться фактически необратимой в благоприятных условиях или может приводить к образованию динамической равновесной смеси продуктов и реагентов. Очевидно, что в последнем случае относительная термодинамическая устойчивость продуктов и реагентов определяет конечный результат, т. е. относительные количества реагентов и продуктов, содержащихся в реакционной смеси при равновесии. Очевидно также, что в первом случае циклизация является кинетически контролируемой реакцией, определяемой разностью свободных энергий АС между реагентами и переходным состоянием для этой циклизации (гл. 8, разд. 1). Точные данные о величинах АЯ= = и Д5 = отсутствуют, но кажется разумным предположение о том, что эти величины будут изменяться параллельно величинам АЯ и АЗ для образования циклов, и поэтому следует рассмотреть-факторы, определяющие эти величины. Изменение в энтальпии является мерой тех связывающих взаимодействий, посредством которых цепь превращается в цикл, а также тех отталкивающих взаимодействий, которые могут появиться в продукте реакции за счет того, что атомы или группы сближены в нем — взаимодействий того типа, которые делают один поворотный изомер-или одну циклическую конформацию более устойчивыми, чем другие (гл. 4). Из этих двух типов взаимодействий первый является безусловно более важным, и поэтому изменения энтальпии при циклизации обычно соответствуют порядку термодинамической стабильности для самих колец. В гл. 12, разд. 2, Б было отмечено, что в той степени, в какой это касается насыщенных карбоциклов, циклопропан является наименее устойчивой молекулой и стабильность возрастает в ряду циклобутан, циклопентан и циклогексан. Поэтому, если рассматривать переход, лишь исходя из изменений энтальпии, то легкость образования циклов должна соответствовать этому же ряду, по-крайней мере для карбоциклов и, возможно, также для насыщенных гетероциклов, содержащих гетероатомы в тетраэдрической или почти тетраэдриче->ской гибридизации. [c.526]


Смотреть страницы где упоминается термин Циклопентан энергия цикла: [c.169]    [c.82]    [c.162]    [c.372]    [c.53]    [c.239]    [c.51]    [c.151]    [c.8]    [c.39]   
Начала органической химии Книга первая (1969) -- [ c.534 ]

Начала органической химии Кн 1 Издание 2 (1975) -- [ c.501 ]




ПОИСК





Смотрите так же термины и статьи:

Циклопентан



© 2025 chem21.info Реклама на сайте