Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекула деформация

Рис. 1.2. Возможные варианты строения молекул нефти и смазочных масел Совершенствование базовых масел проводится по двум основным направлениям. При первом, масло очищается только до такой степени, чтобы в нем осталось оптимальное содержание смол, кислот, соединений серы, азота и, дополнительно, вводятся присадки для улучшения некоторых функциональных свойств. Такой метод не позволяет получать масла достаточно высокого уровня качества, требуемого для современных двигателей. При втором, базовое масло полностью очищается от всех примесей и проводится молекулярная модификация методом гидрообработки (гидрокрекинга, гидроочистки и др.). В результате получается масло, обладающее ценными свойствами для тяжелых режимов работы (высокая стойкость к деформациям сдвига при высоких скоростях, нагрузках и температурах, с высоким индексом вязкости и стабильностью физико-химических параметров). Рис. 1.2. Возможные варианты <a href="/info/4829">строения молекул</a> нефти и смазочных масел Совершенствование базовых масел проводится по двум основным направлениям. При первом, масло очищается только до такой степени, чтобы в нем осталось оптимальное <a href="/info/422069">содержание смол</a>, кислот, <a href="/info/133866">соединений серы</a>, <a href="/info/197967">азота</a> и, дополнительно, вводятся присадки для улучшения некоторых функциональных свойств. Такой метод не позволяет получать масла достаточно высокого уровня <a href="/info/141391">качества</a>, требуемого для современных <a href="/info/395884">двигателей</a>. При втором, <a href="/info/395870">базовое масло</a> полностью очищается от всех примесей и <a href="/info/31682">проводится молекулярная</a> <a href="/info/1793749">модификация методом</a> гидрообработки (гидрокрекинга, гидроочистки и др.). В <a href="/info/1621062">результате получается</a> масло, обладающее ценными свойствами для тяжелых режимов работы (высокая стойкость к <a href="/info/8722">деформациям сдвига</a> при <a href="/info/1263049">высоких скоростях</a>, нагрузках и температурах, с высоким <a href="/info/33808">индексом вязкости</a> и стабильностью <a href="/info/87954">физико-химических</a> параметров).

    При исследовании противоизносных свойств авиационных топлив, необходимо наряду с изучением описанных выше зависимостей изучить механизм взаимодействия топлива с металлами контактируе-мых поверхностей. Многочисленные наблюдения за поверхностями трения, изучение состава продуктов износа, процессов, происходящих в тонких поверхностных слоях металлов, позволяют составить следующую общую схему взаимодействия топлив с металлами в процессе трения. Как только металлический образец погружается в топливо, на его поверхности адсорбируются поверхностно-активные молекулы гетероатомных соединений (кислородных, сернистых, азотистых), а также молекулярный кислород и образуется тонкий граничный слой. Этот слой может воспринимать сравнительно большие, нормальные к поверхностям трения нагрузки и легко деформируется при приложении тангенциальных напряжений. При контактировании двух металлических поверхностей между ними будет находиться граничный слой из адсорбированных молекул. Если контактная нагрузка, скорость относительного перемещения и объемная температура топлива невелики, то тонкая граничная пленка выполняет роль эффективной смазки, а поверхностные слои окислов металла подвергаются в основном упругой деформации, причеМ деформацией охвачены очень тонкие слои окислов. При многократном упругом передеформировании окисных слоев происходит их усталостное разрушение, а на месте разрушенных окислов образуются новые вследствие окисления металла кислородом, всегда присутствующим в топливе или выделяющимся при разложении гетероатомных кислородных соединений. [c.70]

    Первые две стадии реакций контактного окисления, наряду с изложенными выше механизмами, могут протекать по механизму комплексообразования в тех случаях, когда катионы решетки сохраняют свою индивидуальность. Вервей [241 для обратных шпинелей , а затем Морин [25] — для окислов металлов с незапол- ненными З -уровнями электронов указали на такую возможность, объяснив возникновение в таких соединениях электропроводности присутствием в них ионов одного и того же металла в различных валентных состояниях и в эквивалентных позициях кристаллической решетки. Можно предполагать, что подобного рода механизм электропроводности возможен не только для окислов (в том числе и тройных систем окислов [26]), но и для многих полупроводниковых соединений переходных металлов. Базируясь на этих представлениях, Дауден [27 ] рассматривает хемосорбцию на поверхности и явления замещения одного сорбента другим как реакции образования и превращения комплексов по механизму и 8)у2-замещения. Киселев, [28] также рассматривает адсорбцию как процесс поверхностного комплексообразования, когда при возникновении донорно-акцеп-торных связей неподеленная пара электронов лиганда оказывается затянутой на внутренние орбитали атома решетки, являющегос центром адсорбции. При таком механизме адсорбированные молекулы всегда будут в той или иной мере реакционноспособны. Действительно, затягивание неподеленной пары лиганда на внутренние орбитали центрального атома приведет к деформации адсорбированной молекулы и ослаблению внутримолекулярных связей. Отметим попутно, что трактовка Киселева справедливо распространяет электронные представления и на механизм кислотно-основного гетерогенного катализа. Развивая представления теории поля лигандов, Руней и Уэбб [29 ] показали, что механизм реакций дейтеро- бмена, гидрирования и дегидрирования углеводородов на переходных [c.27]


    Теоретически прочность системы может быть оценена сравнением локальных напряжений с прочностью связей между кинетическими единицами высокополимера, образующих пространственную сетку. Разрушение гранулы наступает при значительной деформации и разрыве химических связей этих кинетических единиц. Мерой прочности связей служит силовая постоянная, которая определяет сопротивление молекулы деформации равновесной конфигурации за счет растяжения химических связей [68]. Силовая [c.328]

    Поверхностно-активные молекулы, попадая в микротрещины поверхностей трения и достигая мест, где ширина зазора равна размеру одной-двух молекул, стремятся своим давлением расклинить трещину (рис. 33). Это явление известно под названием адсорбцион-но-расклинивающего эффекта, что также впервые было обнаружено и изучено акад. П. А. Ребиндером. Подсчитано, что давление на стенки трещины может достигать до 1000 кПсм . Адсорбционно-рас-клинивающее действие поверхностно-активных молекул также приводит к облегчению пластических деформаций в поверхностном слое и к понижению прочности металла. При трении металлов это приводит к лучшей приработке деталей и снижению величины силы трения. Однако адсорбционно-расклинивающее действие может приводить к увеличению износа трущихся пар за счет облегчения процессов диспергирования поверхностных объемов металла. [c.61]

    Коэффициент пропорциональности а называется поляризуемостью (или деформационной поляризуемостью)-, он тем больше, чем более поддается молекула деформации, т. е. чем менее жестки ее электронные оболочки (см. стр. 206). Наведенный дипольный момент исчезает, как только поле снимается согласно (III.20) при = 0 и (л нд = 0. [c.137]

    В молекуле любого органического соединения, не имеющего ионизованных или существенно поляризованных атомов или групп, атомы водорода стремятся расположиться в пространстве так, чтобы расстояния между ними были наибольшими без существенной деформации валентных углов. Поскольку присутствие полярных атомов в углеводородах сравнительно редкое явление, а ионизация наблюдается только в некоторых специфических условиях, в этих соединениях роль конформационных эффектов особенно велика и их обязательно надо учитывать. Однако чтобы избежать упрощений, следует помнить, что указанному выше стремлению к переходу в наиболее выгодную конформацию препятствует тепловое движение, которое возвращает большую или меньшую часть молекул на более высокие энергетические уровни, т. е. переводит их в менее выгодные конформации. Это тем более справедливо, чем выше температура. [c.38]

    Наряду с обратимыми эффектами, соответствующими явлению аномалии вязкости, для загущенных масел и для парафинистых масел при низких температурах в результате их деформирования характерны необратимые явления. Под действием больших гидродинамических усилий происходит деструкция— разрыв молекул полимера, а в парафинистых маслах — разрушение или дезагрегирование кристаллитов твердых углеводородов. В этом случае при переходе от высоких скоростей течения к меньшим увеличение (восстановление) вязкости масел будет неполным. Такое явление называют гистерезисом вязкости. Оно определяется тем, что после деформирования с достаточно высокой скоростью сдвига получается новая система, отличная от исходной, не подвергавшейся деформации. В отдельных случаях систему можно вернуть в исходное состояние, например нагреть масло и вновь его охладить. [c.270]

    Исходя из классических представлений, переход кинетической энергии поступательного движения электрона в энергию электронного возбуждения атома или молекулы можно рассматривать как неупругий удар. Удар, при котором энергия поступательного движения будет переходить во внутреннюю энергию, является неупругим. При неупругом ударе деформация соударяющихся тел увеличивается до тех пор, пока скорости их не станут одинаковыми (т. е. Ц1 = и2 = и), после чего шары перестанут давить друг на друга и будут двигаться вместе. [c.74]

    На обратимом водородном электроде двойной электрический слой на платине построен таким образом, что поверхность платины заряжена отрицательно, а внешняя обкладка двойного слоя образована ионами гидроксония. При катодной поляризации, т. е. при подводе к поверхности электрода электронов, ионы гидроксония, подходящие к поверхности электрода, разряжаются не сразу, а предварительно включаются в двойной слой. Вследствие этого поверхностная плотность заряд,з двойного слоя и потенциал электрода увеличиваются, что приводит к растяжению связей между протоном и молекулой воды, т. е. к деформации иона гидроксония и его активации. [c.625]

    Таким образом, приведенные данные показывают определенное сходство во влиянии алкильного заместителя, в частности метильной группы, на легкость разрыва и энергию активации гидрогенолиза С—С-связей кольца в углеводородах ряда циклогептана и циклопентана. Все это привело к предположению [159] о сходстве механизмов гидрогенолиза циклопентанов и циклогептанов на поверхности Pi-катализатора. Рассмотрение на моделях Стюарта — Бриглеба.строения наиболее стабильной конформации циклогептана в форме скошенного кресла (рис. 31) и адсорбции этой конформации на грани Pt (111) [159] подтвердило эту точку зрения. Образование шестичленного переходного состояния (сближение атомов С-1 и С-3 или С-3 и С-5) приводит к изомеризации цикла до шестичленного. Образование пятичленного переходного состояния за счет сближения атомов С-1 и С-5 приводит к деформации молекулы, образованию адсорбированного комплекса, близкого по строению к комплексу, изображенному на рис. 26, т. е. к растяжению и к дальнейшему разрыву одной из связей семичленного цикла. Деформация молекулы циклогептана требует затраты энергии, и, возможно, именно поэтому энергия активации гидрогенолиза циклогептана на 42 кДж/моль выше, чем у циклопентана. [c.157]


    Когда сетка полиуретана подвергается деформации растяжения, то противодействие внешнему напряжению оказывают ориентированные участки между сшивками. Оборванные цепи релак-сируют независимо от приложенного напряжения. При строгом соблюдении требований по функциональности исходных соединений обычно получается уретановый эластомер с пространственной структурой, близкой к идеальной. Но в реальных системах наблюдаются отклонения от оптимально сформированной сетки. Возникают полусвязанные и даже вообще свободные цепи, создающие неэффективную часть сетки [58]. Здесь уместно еще раз напомнить данные по сопротивлению разрыву полиуретанов на основе поли-оксипропиленгликолей. Несомненно, что низкие физико-механические показатели этих полиуретанов есть следствие нерегулярности структуры и отсутствия обратимой кристаллизации при растяжении. Кроме того, промышленный полиэфир молекулярной массы 2000 обычно содержит 4—5% (мол.) монофункциональных молекул, образующих не несущие нагрузки цепи и золь-фракцию полимеров [33, с. 33]. Наличие монофункциональных соединений в пространственной структуре уретановых эластомеров влияет не только на изменение соотношения эффективных и неэффективных цепей, но в некоторой степени определяет молекулярную массу и молекулярно-массовое распределение сегментов. При этом свободные [c.543]

    Квантовохимический подход к прогнозированию гетерогенных катализаторов опирается на методы расчета электронной структуры молекул и твердых тел [7—11]. Наиболее фундаментальными свойствами твердых тел, определяющими характер хемосорбции и катализа на них, являются параметры их энергетической зонной структуры, такие, как энергия уровня Ферми, плотность состояний на границе Ферми, ширина энергетических зон и т. п. Реальная структура катализатора проявляется в деформации энергетических зон вблизи поверхности, наличие дислокационных дефектов, неупорядоченности структуры, а также в изменениях, порождаемых взаимодействием катализатора с субстратом. Все это необходимо принимать во внимание при прогнозировании катализаторов. [c.60]

    При обратимой активированной адсорбции молекул исходных веществ на поверхности твердого катализатора ослабляются связи между атомами в молекулах (деформация молекул), следствием чего является локализация реакции на поверхности раздела и увеличение ее скорости. Следовательно, катализ происходит в мономолекулярном поверхностном слое катализатора. [c.228]

    Коэффициент пропорциональности а называется поляризуемостью (или деформационной поляризуемостью)-, он тем больше, чем более поддается молекула деформации, т. е. чем менее жестки ее электронные оболочки. Наведенный дипольный момент [c.144]

    С потерей молекулами застеклованного тела подвижности связано изменение характера деформации. Если в жидкости упругие деформации полностью маскируются течением, то после застекловании они проявляются в чистом виде. В стеклах, вследствие крайней ограниченности перемещений молекул, деформации имеют упругий характер. [c.47]

    На следующем этапе исследования высказанные выще соображения были проверены на примере таких циклобутанов, строение которых способствует преобладанию одного из обсуждаемых типов адсорбции. Одним из таких соединений является гел -диметилциклобутан [127]. Из-за стерических препятствий, создаваемых геминаль-ной группировкой, плоскостная адсорбция геж-диметил-циклобутана четырьмя атомами цикла без сильной деформации молекулы практически невозможна. Поэтому можно ожидать, что не только на так называемых дублетных катализаторах (Ru, Rh, Ir), но и на Pt и Pd гидрогенолиз геж-диметилциклобутана по связи а будет незначительным или не будет проходить вообще. В то же время гидрогенолиз по связи б представляется столь же незатрудненным, как и в случае моноалкилциклобу-танов. Эксперимент показал, что действительно единственным продуктом первичного гидрогенолиза геж-диме-тилциклобутана на всех изученных катализаторах является 2,2-диметилбутан, т. е. расщепляется лишь неэкра-нированная связь б. Таким образом, подтвердился прогноз, сделанный при рассмотрении моделей Стюарта — Бриглеба, о том, что связь а геж-диметилциклобутана недоступна для гидрогенолиза. [c.116]

    Согласно общим положениям классической теории всякое отклонение геометрии молекулы (деформация) от равновесной ко -фигурации должно сопровождаться увеличением ее потенциальной энергии, т. е. возникновением потенциальной энергии деформации. [c.186]

    X Яц = Яц. Поэтому если линейная трехатомная молекула (Н—А—Н) имеет нормальную координату Q с симметрией то энергия молекулы должна понизиться в результате деформации, при которой указанная координата Q принимает конечное значение. Нормальные координаты молекул вида (Н—А—Н) в конкретном случае СОг перечислены на рис. 13.3, из которого видно, что изгибающая молекулу деформация имеет симметрию а нормального колебания с симметрией Яц вообще не существует. Следовательно, наше заключение о деформации молекулы ВеНг было чересчур поспешным в действительности теория предсказывает, что молекула ВеН.3 должна сохранять линейную форму в полном согласии с экспериментальными данными, [c.386]

    Процесс трения вносит в адсорбцию определенные особенности. При трении на величину адсорбции и десорбции помимо обычных факторов существенно влияют такие параметры, как характер обработки поверхности металла и его предварительная деформация, В частности, результаты опытов показали, что величина поверхности, заполненной адсорбированными молекулами присадки, по мере повышения шероховатости изменяется экстремально, имея максимальное значение при шероховатости, характеризуемой выступами размером 0,3—0,4 мм. Это, по-видимому, связано с тем, что число узлов решетки на 1 см шероховатой поверхности оказывается в 1,5—2 раза выше, чем на идеально гладкой. [c.256]

    Внедрение отдельных молекул илн групп молекул жидкой среды в микротрещины поверхностей трения, или по межкристаллитным плоскостям поверхностей трения приводит к облегчению микро-пластических деформаций поверхностных слоев, облегчению процессов диспергирования и т. п., что в свою очередь приводит к улучшению прирабатываемости трущихся пар, снижению сил трения и износа. [c.59]

    Причина неожиданной неустойчивости молекулы циклопропана заключается в том, что она сильно напряжена. Трехчленный углеродный цикл имеет валентные углы по 60° вместо обычных для углерода тетраэдрических углов 109,5°. Если обратиться к представлениям теории молекулярных орбиталей, можно понять, что перекрывание между гибридными хр -орбиталями атомов углерода в молекуле циклопропана должно быть небольшим, а это означает, что связи оказываются слабыми. В молекуле циклобутана напряжение, или деформация связей, несколько смягчается, а в молекуле циклопентана этот эффект выражен еще меньше. Данные [c.32]

    Таким образом, сочетание модифицированного принципа геометрического соответствия [62] с моделью циклического переходного состояния, в состав которого входят и субстрат и катализатор, по-видимому, наиболее логично может объяснить механизм реакции Сз-дегид-роциклизации углеводородов на поверхности Pt/ . Что же касается некоторой модификации принципа геометрического соответствия, то здесь необходимо сделать небольшое пояснение. В тех случаях, когда переходное состояние близко по геометрическим параметрам к исходным молекулам и деформации невелики, наше толкование геометрического соответствия сливается с его толкованием в мультиплетной теории. В случае же Сз-дегидроциклизации и гидрогенолиза пятичленного кольца положение иное в свободном циклопентане все пять С—С-связей равны, а в переходном состоянии одна из них сильно растянута и валентные углы искажены. Поэтому положения мультиплетной теории в их классическом толковании здесь неприменимы. В связи с этим предложена [63] новая (в определенном смысле, более строгая) формулировка должно иметься геометрическое соответствие между молекулами в переходном состоянии и поверхностью катализатора. Такого рода де-формационно-мультиплетные представления позволили охватить несколько больший круг явлений, че.м это делала мультиплетная теория, не теряя ничего пз достижений последней. В частности, эти соображения хорошо согласуются с конформационными представлениями, благодаря которым можно объяснить ряд тонких эффектов, проявляющихся в ходе Сб-дегидроциклизации. [c.210]

Рис. 1. Схема деформации электронного облака Неполярной молекулы под влиянием электрического поля. Рис. 1. Схема <a href="/info/827738">деформации электронного</a> <a href="/info/8864">облака</a> <a href="/info/6132">Неполярной молекулы</a> под влиянием электрического поля.
    Ввиду того, что поляризуемость является константой, присущей данной молекуле, деформация нейтральных молекул в элек- [c.157]

    Необходимо, наконец, отметить, что применение принципа л. с. э. к электродным процессам в полярографии имеет менее строгие предпосылки, чем его примёнение для гомогенных химических реакций, к которым он первоначально был приложен. Наряду с некоторыми каталитическими реакциями электродные реакции являются первым примером гетерогенного процесса, к которому применены уравнения л. с. э. Но здесь наряду с факторами строения молекул существенную роль играют факторы электрохимической кинетики — строение двойного слоя, адсорбируемость молекул, деформация связей и т. д., которые явно не коррелируются с электронным строением молекулы. В частности, высказывались соображения [97], что для выполнения уравнения л. с. э. величина г] -потенциала должна быть мала в противном случае следует внести поправку на г -потенциал [98]. Было высказано мнение [99], что уравнения л. с. э. должны применяться не к значениям д, а к значениям констант скорости электродного процесса кь, экстраполированным к условиям, в которых о = о, т. е. к электрокапил-лярному нулю. Систематических наблюдений над влиянием этих факторов на Ег, , однако, нет. Они должны быть поставлены в будущем, так же как и должны быть поставлены опыты с повышением температуры, подбором растворителя и быстрокапающего капилляра для предотвращения адсорбции компонентов электродной реакции и получения истинных значений р -констант. [c.111]

    Особенно высоким поляризующим действием обладает ион водорода Н+, который отличается от всех других ионов гораздо мень--шимн размерами и полным отсутствием электронов. Поэтому ноп водорода не испытывает отталкивания от аниона и может сблизиться с ним до очень малого расстояния, внедряясь в его электрон пую оболочку и вызывая сильную ее деформацию. Так, радиус пона h равен 0,181 нм, а расстояние между ядрами атомов хлора и водорода в молекуле НС1 составляет всего 0,127 нм. В дальнейшем мы увидим, что многие кислоты но ряду своих свойств (устойчивость, способность диссоциировать в водных растворах на иоиы, окислительная способность) сильно отличаются от свойств образуемых ими солей. Одной из причин таких различий как раз и является сильное поляризующее действие иона водорода. [c.154]

    В молекуле бицикло[1,1,1]пентана XLV, имеющей ось симметрии третьего порядка, напряжения особенно велики в цикло-бутановых кольцах валентные углы сильно уменьшены угол С2С3С4 = 86,8° и угол С1С4С3 = 75,1° (экспериментальное значение этого угла 73,3°) кратчайшее расстояние между несвязанными атомами углерода равно 1,87 А, что вдвое короче равновесного. В других молекулах деформации валентных углов также очень велики. Несмотря на это, закон Гука с универсальной упругой постоянной 30 ккал-моль рад работает вполне удовлетворительно. [c.182]

    Величина такого индуцированного диполя, как следует из указанного выше уравнения, зависит от силы поля и поляризуемости электрически нейтральной молекулы. Деформация молекул в электрическом поле происходит в результате временного смещения относительно друг друга атомного ядра и электронов. Так как наиболее слабо связаны с атомными ядрами внешние электроны, то они играют основную роль при деформации. Ввиду ТОГО, что поляризуемость является коестантой, присущей данной молекуле, деформация нейтральных молекул в электрическом поле связана , с внутренним сопротивлением [c.129]

    НИМИ останутся неизменными и лишь валентные углы увеличатся до 120°. Между тем, деформация молекулы циклопентана при такой адсорбции, как показано на рис. 25, будет гораздо больше одна из пяти С—С-связей обязательно должна будет существенно растянуться. Разрыв этой растянутой (а следовательно, ослабленной) связи и присоединение водорода происходят по дублетной схеме мультиплетной теории, но для достижения необходимой деформации молекула должна предварительно адсорбироваться на активном центре, представляющем собой полный секстет. Поэтому такая схема получила название секстетно-дублетной. Такой секстетный способ адсорбции на Pt (грань 111) вызовет, естественно, необходимую деформацию исходной молекулы циклопентана и, наоборот, не приведет к сколько-нибудь значительному растяжению связей в циклогексанах и алка-нах. Очевидно этим и обусловлено практически полное отсутствие гидрогенолиза циклогексанов и алканов на Pt-катализаторах в обычных условиях. [c.126]

    Процесс катализа, очевидно, осуш,ествляется следуюш им образом. Реагирующая молекула, попадая в силовое поле катиона, поляризуется вследствие оттягивания электронов катионом. Чем больше си.ювое поле, тем быстрее и глубже она испытывает такие деформации. Следовательно, литиевая форма цеолита, содержащая катионы меньшего радиуса и имеющая большее силовое поле, будет более активной, чем натриевая, калиевая и рубидиевая. [c.313]

    У гелей, образуемых высокомолекулярными соединениями, молекулы соединяются друг с другом в длинные цепочки или нити. Переплетения этих нитей создают ажурную пространственную решетку (скелет геля), ячейки которой заполнены интермицелляр-ной жидкостью. Такая структура и сообщает гелю свойства твердого тела сопротивляться деформации. Консистенция геля сильно зависит от содержания в нем растворителя, в данном случае воды. Например, гель кремневой кислоты, содержащий 94—97% воды, имеет вид желе и дрожит при сотрясении, при 90—94% воды гель режется нон<ом, а при 75% воды делается ломким. [c.34]

    Хотя в некоторых случаях активированная адсорбция и является одиой из стадий гетерогенного каталитического процесса, роль ее в процессе все-таки недостаточно ясна. Можно предполагать, что активированная адсорбция приводит к деформации адсорбированных молекул и тем самым повышает их реакционную способность. Кроме того, энергии диссоциации адсорбированных молекул оказываются меньше, чем энергия диссоциации мoJ[eкyл, находящихся в объеме. [c.311]

    Деформацио[П[ое колебание концевой метильной группы дает две полосы симметричного колебания 1375—1385 и асимметричного колебания 1450—1460 сл Ч В нормальных парафинах наблюдаются только две полосы. При разветвлении в конце [tenu, т. е. при наличии изопропильной группы —СН(СНз)2, в результате резонанса наблюдается расщепление полосы симметричного деформационного колебания в метильной группе на две полосы примерно одинаковой интенсивности 1368—1370 и 1381—1389 см . Появление дублета в этой области спектра, состоящего из полос примерно одинаковой интенсивности, является доказательством присутствия в молекуле изо-пропильной группы. Подтверждением этого служит полоса, которую относят к деформационному колебанию С—С—С 919—922 см .В спектрах соединений, содержащих мэо-пропильную группу, всегда наблюдается полоса 1175 см . Интенсивность этой полосы меньше интенснв-ности полосы симметричного деформационного колебания. [c.64]


Смотреть страницы где упоминается термин Молекула деформация: [c.341]    [c.27]    [c.46]    [c.46]    [c.12]    [c.112]    [c.129]    [c.203]    [c.114]    [c.297]    [c.136]    [c.594]    [c.397]    [c.52]    [c.303]    [c.25]    [c.292]   
Учебник общей химии (1981) -- [ c.84 ]

Основы общей химии Т 1 (1965) -- [ c.103 , c.104 ]

Основы общей химии Том 2 Издание 3 (1973) -- [ c.102 , c.105 ]

Основы общей химии Том 3 (1970) -- [ c.103 ]

Основы общей химии том №1 (1965) -- [ c.103 , c.104 ]




ПОИСК





Смотрите так же термины и статьи:

Возбуждение атомов и деформация молекул при сверхвысоких давлениях

Деформация геометрии молекул

Деформация геометрии молекул боковая

Деформация геометрии молекул внутренняя

Деформация геометрии молекул фронтальная

Деформация молекул при адсорбции

Деформация молекулы в электрическом поле. Поляризуемость молёхулы

К о у л с о н. Геометрия молекул и пространственные деформации

Колебания в молекуле метильные, асимметричная деформаци

Оптическая активность и деформация молекул

Цепные молекулы, зависимость деформации от температуры



© 2025 chem21.info Реклама на сайте