Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы подгруппы меди

    Укажите различие в химических свойствах щелочных металлов и металлов подгруппы меди. [c.155]

    Некоторые физические характеристики металлов подгруппы меди [c.52]

    Электропроводность кристаллов -элементов обеспечивается главным образом электронами внешних -орбиталей. В связи с этим электропроводность переходных металлов ниже, чем у типичных металлов. Исключением являются металлы подгрупп меди и цинка, у которых -орбитали полностью заполнены электронами и не перекрываются с внешними 5-зонами. [c.85]


    Обращают на себя внимание высокие значения электрической проводимости и теплопроводности меди и ее аналогов. Серебро характеризуется максимальной для металлов электрической проводимостью. Медь по электрической проводимости уступает только серебру. В связи с этим около 40 % всей добываемой меди идет на изготовление электрических проводов и кабелей. Этой области применения металла способствуют исключительная пластичность и тягучесть меди. Из нее можно вытянуть проволоку диаметром 0,001 мм. У всех металлов подгруппы меди положительные стандартные электродные потенциалы, что свидетельствует об их низкой химической активности. В ряду стандартных электродных потенциалов все три металла располагаются правее водорода. [c.334]

    При образовании кристаллических решеток переходных металлов ns- и (п—1) -электронные подуровни расщепляются в зоны, которые перекрывают друг друга s- и d-электроны различным образом распределяются в зонах. Ряд свойств переходных металлов обусловливается частичным переходом ns-электронов в зону незанятых (я—1)й(-состоя-ний. Указанным переходом объясняется прежде всего низкая электропроводность переходных металлов по сравнению с непереходными металлами подгруппы меди. В подгруппе меди зона (п—1)<з -состояний занята полностью и ns-электроны в равновесном распределении остаются целиком в rts-полосе, что и определяет главным образом высокую электропроводность меди, серебра и золота (табл. 33).-Так как распределение электронов между s- и d-полосами при их перекрывании зависит от температуры, давления и посторонних включений, а изменение электронного распределения в твердом теле может изменить кристаллическую решетку, то многие переходные металлы полиморфны. [c.319]

    Большинство переходных металлов отличаются большой твердостью. Все они каталитически активны и парамагнитны. Металлы подгрупп меди и цинка, бериллий, галлий, висмут и др. — диамагнитны. Большинство соединений и /-элементов также обладает парамагнитным характером многие из них образуют окрашенные соединения, что нехарактерно для элементов главных подгрупп. Соединения, в которых все электроны спарены, диамагнитны. [c.320]

    Многие соединения одновалентных металлов подгруппы меди бесцветны, тогда как их соединения высшей валентности окрашены. [c.356]

    Металлы подгруппы меди не растворяются в соляной кислоте. В присутствии же воздуха медь медленно растворяется в ней  [c.356]

    Взаимодействие с металлами. Индий, как и галлий, не образует ни с одним металлом непрерывных твердых растворов. Большой растворимостью в индии в твердом состоянии обладают все металлы, окружающие его в периодической системе галлий, таллий, олово, свинец, висмут, кадмий, ртуть, в меньшей мере — цинк. Кроме того, большой растворимостью в индии обладают магний и литий. Сам индий образует твердые растворы на основе металлов подгруппы меди, а также никеля, марганца, палладия, титана, магния, олова, свинца и таллия. Ограниченная растворимость в жидком состоянии обнаружена в системах индия с алюминием, железом и бериллием. [c.297]


    МЕТАЛЛЫ ПОБОЧНОЙ ПОДГРУППЫ ГРУППЫ (МЕТАЛЛЫ ПОДГРУППЫ МЕДИ) [c.413]

    Важность окислительного числа прежде всего заключается в том, что номер группы Периодической системы указывает на высш)то положительную степень окисления (характеристическая степень окисления), которую могут иметь элементы данной группы в своих соединениях. Исключение составляют металлы подгруппы меди, кислород, фтор, металлы семейства железа и некоторые другие элементы VHI группы. Кроме того, понятие степени окисления полезно при классификации химических соединений, а также при составлении уравнений окислительно-восстановительных реакций. Кривая изменения максимальной положительной степени окисления имеет периодический характер в зависимости от порядкового номера элемента (рис. 23). При этом в пределах каждого большого периода эта зависимость представляется сложной и своеобразной. [c.55]

    Электрические свойства простых веществ, как известно, являются одним из признаков, по которым их делят на металлы и неметаллы. С электрической проводимостью тесно связана теплопроводность кристаллов, обусловленная передачей теплоты за счет колебаний атомов в узлах кристаллической решетки (фоно-ны) и передачей теплоты электронами. В кристаллах неметаллов концентрация свободных электронов незначительна. Поэтому все они являются полупроводниками и диэлектриками и обладают низкой теплопроводностью, обусловленной колебаниями решетки. В противоположность этому для металлов характерны высокие значения электрической проводимости (порядка 10 — 10 Ом -см ) и теплопроводности, поскольку в этом случае вклад свободных электронов в теплопроводность является определяющим. Наиболее высокой электрической проводимостью и теплопроводностью обладают металлы подгруппы меди и алюминий. Для переходных металлов характерны достаточно высокие, но несколько меньшие значения электрической проводимости. [c.249]

    Металлы подгрупп меди и цинка с водородом практически не взаимодейств -ют, хотя имеются указания на незначительную растворимость водорода в меди и серебре и на существование малостабильного гидрида СиН. Таким образом выявляется общая закономерность, согласно которой повышенная растворимость водорода и способность к образованию металлоподобных фаз внедрения наблюдается у -элементов с сильно дефектными -оболочками. А элементы конца вставных декад обладают ма.лым сродством к водороду. Это объясняется повышенной возможностью обобществления. электрона внедренного атома водорода в случае, когда не все электронные уровни в соответствующей энергетической зоне заполнены. [c.270]

    Металлохимия лития. По металлохимическим свойствам литий также отличен от других элементов 1А-группы. Объясняется это аномально малой плотностью, резким увеличением температуры плавления в направлении от натрия к литию, а также размерными факторами. Так, литий при сплавлении со своими групповыми аналогами (1А-группа) дает расслоение. В противоположность другим металлам 1А-группы литий не образует металлидов с металлами подгруппы меди. Литий с алюминием образует интерметаллические соединения, тогда как остальные металлы Ь -группы не смешиваются с алюминием в расплавленном состоянии. В то же время все металлы 1А-группы, включая литий, хорошо образуют амальгамы. Кроме того, однотипный характер имеет взаимодействие металлов 1 А-группы с Ga, In, Pb и Sn. [c.306]

    Подгруппа меди. Характеристика элементов 1В-груп-п ы. Сравнительно малая химическая активность элементов подгруппы меди объясняется двумя причинами. Во-первых, ярко выраженным в их атомах эффектом проникновения s-электронов внутрь непосредственно подстилающих (п — l)d-оболочек [в случае золота и (п — 2)/-оболочки]. Во-вторых, в результате -контракции и совместной d- и /-контракции (золото) радиусы их атомов значительно меньше радиусов атомов щелочных металлов [г (К) > г (Си), г (Rb) > г (Ag), г ( s) > г (Аи)]. В результате металлы подгруппы меди характеризуются несравненно большими значениями первого ионизационного потенциала, ОЭО, сродства к электрону, чем щелочные металлы. [c.310]

    Аквакомплексы катионов металлов подгруппы меди нестойки. Для Си(+1) и Ag(+l) гораздо устойчивее аммиакаты. [c.313]

    Комплексные соли однозарядных металлов подгруппы меди, например K[Ali( N)2], K[Ag( N)2], очень стабильны. Растворами этих солеп пользуются для получения качественных покрытий при серебрении и золочении различных изделий, в частности волноводов. Эти соли получают ири извлечении самородных золота и серебра из природных пород цианидным способом  [c.444]

    Укажите различие в химических свойствах щелочных металлов и металлов подгруппы меди (отношение к воздуху, воде, разбавленным кислотам сила образуемых оснований восстановительные свойства). Чем можно объяснить это различие  [c.235]

    Соединения с щелочными и щелочноземельными металлами, а также с металлами подгрупп меди и цинка, разлагающихся водой, взаимодействуют с кислотами, с щелочами. При нагревании на воздухе и в парах галогенов воспламеняются, реагируют с парообразными или расплавленными серой, фосфором, селеном, теллуром. [c.58]


    Металлы подгруппы меди — типичные комплексообразовате-ли, и в этом отношении они примыкают к платиновым металлам. Сравнения устойчивости комплексных соединений в ряду Си—Ag несколько затруднительные в связи с разной устойчивостью простых соединений при одинаковой степени окисления. [c.393]

    Металлохимия. Металлы подгруппы калия между собой образуют непрерывные твердые растворы. Натрий не дает непрерывных твердых растворов с другими щелочными металлами и согласно этому металлохимическому критерию стоит ближе к литию. Для щелочных металлов наиболее характерно образование металлидов с S- и s/5-металлами, а также с элементами с полностью заполпеиными (л—1)(з -орбиталямп (металлы подгрупп. меди и цинка). Так как щелочные металлы не смешиваются с жидким алюминием, они с ним не образуют пи твердых растворов, ни металлидов. В то же время литий и натрий дают металлиды с галлием и индием. С переходными металлами с дефектной (п—1) -оболочкой щелочные металлы не взаимодействуют, а при высоких температурах наблюдается расслоение в широком диапазоне концентраций. Устойчивость Ti, V, Сг, Fe, Nb, Та, Zr к действию расплавленных щелочных металлов позволяет использовать последние в качестве теплоносителей в авиационных двигателях и в первичном контуре атомных реакторов. [c.118]

    Аквакомплексы катнонов металлов подгруппы меди нестойки. Для Си( —1) и Ag(-rl) гораздо устойчивее аммиакаты. Как и следовало ожидать, с увеличением числа лигандов"рстет прочность к1жплекса lA.g(NНп)Г характеризуется рК 3,2, а 1Ай(МНз)2] р/( 7,0. [c.123]

    Хлориды металлов. Для металлов I—IV групп периодической системы максимальная степень окисления в хлоридах совпадает с номером группы. Только металлы подгруппы меди, некоторые лантаноиды и актиноиды дают наряду с характеристическими хлориды более высокой и низкой степеней окисления. Но обусловлено это не образованием катионо- или анионоизбыточных фаз, а проявлением переменных степеней окисления указанных металлов. В случае металлов V—VIII групп максимальная степень окисления по хлору, отвечающая номеру группы, как правило, не достигается. Главная причина этому — недостаточная окислительная активность хлора. Даже фтор не дает многие теоретически возможные высшие фториды. Кроме того, атомы металла не могут координировать вокруг себя много атомов хлора из-за пространственных затруднений (стеричес-кий фактор). [c.363]

    Шую положительную степень окисления (характеристическая степень окисления), которую могут иметь элементы данной группы в своих соединениях. Исключением являются металлы подгруппы меди, кислород, фтор, бром, металлы семейства железа и некоторые другие элементы VIII группы. Кроме того, понятие степени окисления полезно при классификации химических соединений, а также при составлении химических уравнений окислительно-вос- [c.72]

    Все металлы VHI группы каталитически активны в большей или меньшей мере поглощают водород и активизируют его образуют окрашенные ионы (соединения). Никель, палладий и платина по свойствам приближаются к металлам подгруппы меди. В частности, сходство обнаруживается в проявлении увеличивающегосясродства к сере и уменьшающегося к кислороду, что особенно характерно для меди и серебра. [c.344]

    Индий образует интерметаллические фазы (бертоллидного типа) с некоторыми близкими металлами, такими, как олово и свинец. 1Целый ряд фаз (так называемых электронных соединений) образуется в системах с металлами подгруппы меди. Большим числом интерметаллических соединений характеризуются системы индия с магнием, никелем, редкоземельными металлами. [c.297]

    Относительный рост объема металла AVIV в при плавлении для всех трех металлов близок. Энтропии плавления и испарения, электропроводность а и отношения различаются мало (табл. 21). Любопытно, что они и ДУ/Утв имеют в точности ту же величину, что и у алюминия (см. табл. 23). Структура алюминия такая же, как у металлов подгруппы меди, концентрация почти свободных электронов значительно выше. По расчетам Т. Фабера [7], отношение длины свободного пробега электронов в жидкой фазе к среднему межатомному расстоянию у алюминия равно 6, у меди 13, серебра 18 и золота 10. Пары металлов подгруппы меди, подобно парам алюминия, в основном одноатомны, но, содержат небольшие (порядка 1%) примеси двухатомных и, возможно полимерных молекул. Энергии диссоциации равны (в кДж/моль) 201 для Сиг, 173,5 для Ag2 и 216 для Апг. [c.195]

    Значительно большие плотности, температуры плав ления и кипения, твердости металлов подгруппы меди, по сравнению со щелочными металлами, обусловлены меньшими размерами их атомов и более плотной упа ковкой крсталлйчёскоя решетке. [c.414]

    Металлохимия. Метал,пы подгруппы калия между собой образуют непрерывные твердые растворы. Натрий не дает непрерывных твердых растворов с другими щелочными металлами и согласно этому металлохимическому критерию стоит ближе к литию. Для щелочных металлов наиболсзе характерно образование металлидов с V и sp-металлами, а также с элементами с полностью заполненными (п — 1) -орбиталями (металлы подгрупп меди и цинка). Так как щелочные металлы не смешиваются с жидким алюминием, они с ним не образуют ни твердых растворов, ни металлидов. В то же время литий и Есатрий дают мегалли-ды с галлием и индием. С переходными металлами с дефектной (п — 1) -оболочкой щелочные металлы не взаимодействуют, а при высоких температурах наблюдается расслоение в широком диапазоне концентраций. [c.310]


Смотреть страницы где упоминается термин Металлы подгруппы меди: [c.147]    [c.406]    [c.134]    [c.364]    [c.66]    [c.195]    [c.50]    [c.305]    [c.322]    [c.468]    [c.428]   
Смотреть главы в:

Неорганическая химия -> Металлы подгруппы меди




ПОИСК





Смотрите так же термины и статьи:

Меди подгруппа

Медь ГЦК-металлы



© 2025 chem21.info Реклама на сайте