Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каталитически активные вещества группы

    Скорость каталитического разложения пероксида водорода. В данном задании предлагается большой группе студентов сравнить каталитическую активность различных веществ в реакции разложения пероксида водо рода (3%-й раствор), например соединений марганца М.пОц , Мп(0Н)4, Мп(0Н)2, Мп2+, МпОг и МпО, или соединений хрома, железа,, титана, ванадия. [c.312]


    Замечательнейшая способность твердого вещества сохранять форму обусловлена тем, что его структура существует в довольно широком диапазоне изменений температуры и других условий, пока не разрываются связи между структурными единицами. Если это межатомные связи, то структура твердого вещества может обладать высокой устойчивостью. Именно благодаря исключительной прочности и жесткой направленности связей С — С, С — N, В — N, Р — N, Si — О, Si — О — А1, Fe — Fe, Ni — Сг, образованных sp-оболочками атомов элементов главных подгрупп И1—VI групп и d-оболочками атомов переходных элементов, мы имеем целый арсенал превосходных материалов. Связь С — С среди других межатомных связей выделяется так же ярко, как алмаз среди других твердых веществ. Благодаря ее прочности мы можем получать особо легкие жесткие материалы, обладающие в высшей степени ажурной структурой, химически стойкие и жаропрочные, каталитически активные и, наконец, биологически совместимые. На основе углерода природой созданы различные биоматериалы — прочнейшие живые ткани, например, кожа, шерсть, паутина активнейшие реагенты — ферменты, гормоны целые органы и сами организмы. [c.8]

    Известно, что все ферменты являются веществами белковой природы. Молекулы многих из них — это обычные, характерные молекулы белков, не содержащие иных дополнительных компонентов иными словами, это — простые белки. Однако уже давно доказано, что многие ферменты обладают каталитически активными простетическими группами небелковой природы, т. е. представляют собой сложные белки. Простетические группы обычно можно отделить от белковой части различными способами диализом, пропусканием раствора через сефадекс, и др. Для таких сложных ферментов обычно принимают следующие термины если диализируемая часть представляет собой органическую молекулу, ее называют коферментом белковую часть называют апоферментом, а их соединение определяют как голофермент. Коферментами часто являются молекулы витаминов. Большая часть окислительно-восстановительных ферментов имеет кофер-ментные группы. Интересно, что этот термин редко применяют к ионам металлов, хотя они часто выполняют ту же характерную функцию. [c.39]

    Такие реакции известны достаточно давно [1—4]. Они успешно проходят на двух группах катализаторов. К первой относятся катализаторы с чисто металлической поверхностью (монокристаллы, пленки, черни), а также катализаторы, содержащие один или несколько металлов на носителях, не имеющих своей особой функциональной активности, например на активированном угле. К другой группе принадлежат катализаторы, состоящие из металла, чаще всего переходного, отложенного на каталитически активном веществе, выполняющем особую каталитическую функцию. Такие катализаторы называют бифункциональными. [c.87]


    Процедура установления границы классов может быть построена априорно, до начала процесса распознавания, либо в ходе собственно процесса распознавания. Первый подход имеет место, если в разрабатываемом множестве катализаторов не предполагается резкого различия между отдельными группами катализаторов и желательно подобрать катализаторы лишь по эффективности пх действия. В этом случае границы классов устанавливаются только но технико-экономическим соображениям. Итак, первый подход требует априорного установления границ классов. Второй подход представляет интерес в случаях, когда наряду с задачами прогнозирования возникают вопросы анализа механизмов явления и установления естественной классификации множества каталитически активных веществ по их свойствам. При этом граница классов заранее не устанавливается, а определяется в ходе решения задачи. Этот подход, называемый распознавание без учителя , требует применения специальных алгоритмов [35]. [c.83]

    Особого внимания заслуживают выдающиеся работы Н. И. Кобозева по изучению процесса формирования активных центров из разрозненных молекул или атомов катализатора. В этих исследованиях для некоторых химических реакций получены сведения о минимальном числе атомов в агрегате, необходимых для появления у формирующейся частицы вещества каталитической активное Элементарная группа атомов, проявляющая каталитическую актив-ность Швана активным ансамблем . Молекулы, атомы или ионы вещества могут двигаться по поверхности носителя и группироваться в ансамбли, однако эти движения ограничены определенными и весьма небольшими областями миграции . Н. И. Кобозев (1939 г.) показал, что по изменению удельной активности в зависимости от заполнения поверхности носителя катализатором можно рассчитать величину ансамбля, т. е. число атомов в ансамбле и среднюю величину области миграции. Весьма интересна связь, устанавливаемая этой теорией между типичным гетерогенным катализом и действием сложных ферментных катализаторов. Теория ансамблей является одной из важных частей общей теории приготовления катализаторов. [c.8]

    Чтобы лучше понять закономерности кинетики гетерогенно-ката-литических процессов, целесообразно рассмотреть специфические особенности катализа на поверхности раздела фаз. В гомогенном катализе катализатор выступает в молекулярной форме, в гетерогенном катализе катализатор выступает в форме совокупности большого числа молекул или атомов, образующих отдельную фазу. Так, например, в коллоидной частице платины сосредоточено 10 10 атомов, из них менее 1 % расположено на поверхности частицы. В скелетном никеле число атомов в частице радиусом 50 мкм равно 10 , из них только несколько процентов находится на поверхности раздела фаз. Следовательно, в гетерогенном катализаторе только незначительная часть атомов или молекул катализатора может непосредственно взаимодействовать с молекулами реагирующих веществ. С увеличением 5уд возрастает доля молекул или атомов, находящихся на поверхности раздела фаз, возрастает и каталитическая активность. Однако диспергирование катализатора до молекулярной степени дисперсности необязательно приведет к максимальной активности катализатора. Активность при этом может проходить через максимум и снижаться до нуля. Активные центры на поверхности катализатора могут включать несколько атомов или атомных групп. Их каталитическая активность может зависеть от атомов и молекул, находящихся во втором, третьем или п-м слоях атомов и молекул. Тогда переход к молекулярной степени дисперсности приведет к разрушению активного центра и к потере активности катализатора. В гомогенно-каталитических реакциях в растворах молекулы катализатора равномерно распределены по всему объему жидкой фазы. В гетерогенном каталитическом процессе молекулы или атомы, принимающие участие в элементарном каталитическом акте, сосредоточены в очень малом объеме, ограниченном поверхностью катализатора и толщиной слоя раствора (газа) Л, равной расстоянию, на котором начинают существенно проявляться силы притяжения между молекулами реагирующих веществ и поверхностью катализатора. Принимая /г 10 м и 5уд 100 м г"1, рассчитаем объем реакционного пространства, в котором протекает элементарный химический акт  [c.636]

    В практике прогнозирования катализаторов существенным вопросом является конкретное определение понятия класс . Здесь могут быть два подхода. Если в разрабатываемом множестве катализаторов не предполагается резкого, качественного различия между отдельными группами катализаторов или если вне зависимости от природы каталитического эффекта желательно подобрать катализаторы лишь по эффективности их действия, то границы классов устанавливаются только по технико-экономическим соображениям, например, исходя из тех значений производительности или селективности, ниже которых процесс становится нерентабельным. В этих случаях границы классов проводятся достаточно произвольно, обычно исходя из сложившейся практики аналогичных или действующих производств. Если можно предположить качественные различия в активности или селективности для отдельных подмножеств исследуемого множества катализаторов, то границу классов следует проводить по значениям параметров, соответствующих естественному разделению множества на подмножества. Первый подход свойствен задачам прогнозирования в чистом виде. Он требует априорного установления границ классов. Второй подход представляет интерес в случаях, когда наряду с задачами прогнозирования или перед ними возникают вопросы анализа механизмов явления и установления естественной классификации множества каталитически активных веществ по их свойствам. В этом случае граница классов заранее не устанавливается, а определяется в ходе решения задачи. Этот метод, обозначаемый термином распознавание без учителя , требует [c.101]


    Механизм простых реакций, катализируемых ферментами, в основном описывается схемой, приведенной в предыдущем разделе. Такие каталитические реакции используют для определения концентрации субстрата, активатора (вещества, которое способствует проявлению каталитической активности определенной группы ферментов), ингибитора (вызывающего замедление реакции), а также фермента.  [c.392]

    Хорошо известно, что органические соединения, особенно неполярные, могут абсорбироваться на поверхности или внутри мицелл. Это приводит к увеличению их растворимости в водных растворах и часто к изменению химической активности. В то же время именно мицеллы, а не индивидуальные молекулы ответственны за изменение скорости органических реакций в водных растворах, содержащих ПАБ. Следовательно, удачный выбор поверхностно-активного вещества может способствовать увеличению скорости в 5—1000 раз по сравнению со скоростью реакции, протекающей в его отсутствие. В зависимости от типа мицелл создается повышенная концентрация ионов Н+ или 0Н в слое Штерна, что и обусловливает увеличение скорости реакции. Другие основные или нуклеофильные группы в мицелле также должны оказывать каталитическое действие. Гораздо более слабые взаимодействия между мицеллой и противоионами существуют в более широком слое Гуи — Чепмена, ширина которого (от поверхности мицеллы) составляет несколько сотен ангстрем в этом слое содержание ионов меняется плавно( плавный градиент ионов). [c.284]

    СООН, N1 2, ЫН, ОН, 5Н, а также гидрофобные группы, способные ориентировать молекулы реагирующих веществ в определенном положении по отношению к активному центру. В состав активного центра многих ферментов входят ионы металлов, причем при удалении иона металла из металлофермента последний теряет каталитические свойства. Каталитическая активность ферментов имеет максимум на шкале pH, в сильнокислых и сильнощелочных средах она, как правило, не проявляется. Каталитическая активность ферментов наиболее оптимальна при температуре от 20 до 40° С, при 60 — 70° С происходит их денатурация. Активные центры имеют строго определенную структуру, что позволяет ферменту присоединять только молекулы определенного строения. Так, например, фермент уреаза гидролизует карбамид СО(NH2) в 10 раз быстрее, чем ион водорода, и не оказывает влияния на реакции гидролиза других родственных карбамиду соединений. В настоящее время известно около тысячи ( )ер-ментов, одни из которых катализируют только окислительно-восстановительные процессы, другие—реакции с переносом групп, третьи—реакции гидролиза и т. д. [c.184]

    Теория активных центров Тейлора объединила три группы фактов данные по активированной адсорбции реагентов, результаты опытов по энергетической неоднородности поверхности катализаторов и феноменологические законы, относящиеся к действиям небольших количеств примесей, изменяющих каталитическую активность веществ. Для описания таких явлений достаточно простой энергетической модели, однако природа активных центров при этом остается неясной. [c.86]

    Очевидно, кроме условия энергетического соответствия, катализаторы должны отвечать еще и другим требованиям, специфичным для каждой группы однотипных каталитических систем. Эти дополнительные условия могут выступать для тех или иных групп реакций на первый план, что дает основание для существования ряда теорий катализа, различающихся по тому, какие из параметров определит каталитическую активность веществ. [c.12]

    Таким образом, в работах последних лет были уточнены границы применимости термодинамического метода в теории катализа и в то же время найдены новые возможности использования этого метода. Поэтому целесообразно в свете новых результатов систематически проанализировать опытный материал по гетерогенному каталитическому окислению, тем более, что со времени опубликования работ [12, 13, 29, 48] он значительно обогатился. Этому и посвящена настоящая работа, в которой рассматривается окисление неорганических молекул, и работа [17], где анализируется полное окисление органических веществ. Основные задачи этих исследований сводятся к следующему анализ связи между каталитической активностью веществ в отношении различных реакций и величинами да выявление групп однотипных каталитических систем проверка пригодности термодинамического критерия оптимального катализатора (1) для каждой такой группы использование термодинамического метода для оценки относительной реакционной способности различных молекул на данном катализаторе. [c.27]

    Одна из основных причин такого положения в каталитической химии сернистых веществ заключается в том, что выбор твердого катализатора для ускорения реакций соединений серы представляет собой трудную задачу. В настоящее время нет единой теории катализа, позволяющей предвидеть каталитическую активность веществ. Частные закономерности, установленные для отдельных групп катализаторов и реакций, не всегда могут быть использованы при подборе катализаторов, ускоряющих реакции сернистых соединений, из-за специфики химических свойств последних, обусловливающей особый характер их превращения и, главное, часто нежелательное влияние на свойства твердого контакта. Широко распространено мнение (см., например, учебники и монографии по гетерогенному катализу [19—22]) о сернистых соединениях как о сильных контактных ядах. В связи с этим возникает вопрос, можно ли все же использовать твердые катализаторы — металлы, их окислы и сульфиды — для ускорения реакций соединений серы и чем руководствоваться при прогнозировании каталитического действия  [c.8]

    В большинстве случаев катализаторы подбирают путем длительных и трудоемких экспериментальных поисков, так как в настоящее время еще нет единой теории катализа, позволяющей предвидеть каталитическую активность твердых веществ в отношении различных реакций. Некоторую ориентацию в направлении этих поисков можно получить с помощью имеющейся справочной литературы по каталитической активности веществ, а также используя приближенные зависимости, установленные для отдельных групп катализаторов и реакций. [c.10]

    В группу каталитических реакций включают весьма разнородные по своим механизмам процессы, объединяемые по единственному признаку — ускорению реакции в присутствии катализатора. Поэтому в общем случае нельзя указать на единый механизм катализа или установить некоторый, общий признак, с помощью которого можно предвидеть каталитическую активность вещества. Однако изученные до настоящего времени каталитические реакции все же удается разделить на относительно небольшое число сходных по своему типу процессов. [c.5]

    Вообще говоря, в качестве катализатора для дегидрогенизации газообразных парафинов применяются окиси металлов 6-й (например хром и молибден), б-й (например ванадий) и 4-й (например титан и церий) групп таблицы Менделеева, нанесенные на вещества со сравнительно низкой каталитической активностью (например окиси алюминия и магния). [c.240]

    Изучение процессов получения сорбентов и катализаторов. Существует большое внутреннее сходство процесса выщелачивания минералов, стекол или сплавов с внешне непохожим на него процессом активирования угля. Как в том, так и в другом процессе из состава сложного вещества путем удаления менее прочно связанных атомов или атомных групп выделяется более простое вещество, обладающее повышенной сорбционной, а также каталитической активностью. Данное вещество является не чем иным, как освобожденным остовом структуры исходного твердого вещества, претерпевающим при выделении лишь некоторую перестройку, обычно направленную на соединение цепей в ленты, лент — в сетки и, сеток — в каркасы, т. е. на повышение мерности остова. Выщелачивание, обжиг, вообще извлечение Остова из структуры исходного вещества, как нетрудно было заметить, является далеко не единственным путем получения активных твердых тел, обладающих каркасным строением. [c.64]

    Каталитическую активность гетерогенного катализатора характеризуют константой скорости реакции, отнесенной к одному квадратному метру поверхности раздела фаз реагентов и катализатора, или скоростью реакции при определенных концентрациях реагирующих веществ, отнесенной к единице площади поверхности. Промышленные катализаторы применяют в форме цилиндров или гранул диаметром несколько миллиметров. Гранулы катализатора должны обладать высокой механической прочностью, большой пористостью и высокими значениями удельной поверхности. Большую группу катализаторов получают нанесением активного агента, например платины, палладия, на пористый носитель (трегер) с высокоразвитой поверхностью. В качестве носителей применяют активированный уголь, кизельгур, силикагель, алюмогель, оксид хрома (П1 и другие пористые материалы. Носитель пропитывают растворами солей металлов, например Pt, Ni, Pd, высушивают и обрабатывают водородом при 250—500° С. При этом металл восстанавливается и в виде коллоидных частиц [л = (2 -f- 10) 10 м1 осаждается на поверхности и в порах носителя. Можно провести синтез катализатора непосредственно на поверхности носителя, пропитав носитель растворами реагентов, с последующей термической обработкой. Так получают катализаторы с металлфталоцианинами, нанесенными на сажу, графит и другие носители. Широко применяются металлические сплавные катализаторы Ренея. Их получают из сплавов Ni, Со, u, Fe и других металлов с алюминием в соотношениях 1 1. Сплав металла с алюминием, измельченный до частиц размером от 10" до 10" м, обрабатывают раствором щелочи, алюминий растворяется, остающийся металлический скелет обладает достаточной механической прочностью. Удельная поверхность скелетных катализаторов превышает 100 м г" . Такие катализаторы применяются в процессах гидрирования, восстановления и дегидрирования в жидкофазных гете рогенно каталитических процессах. [c.635]

    Органические соединения в целом образуют колоссальный фонд молекулярных структур, составленных из относительно прочных каркасов (цепи и циклы из звеньев С—С и С = С), способных создавать множество пространственных конфигураций, стабилизированных небольшими энергетическими барьерами. В каталитически активных структурах—в активных группах ферментов— энергетические барьеры для определенных движений очень малы. Согласно взглядам Кошланда, получившим и опытное подтверждение, фрагменты активных групп ферментов движутся в процессе каталитического превращения, приспосабливаясь к строению молекулы субстрата. Следовательно, органические соединения строят отношения со средой главным образом на языке геометрии взаимодействующих частиц. Для них пространственные коды имеют хотя и не исключительное, но первостепенное значение. По сравнению с общим числом соединений углерода число определенных типов органических соединений, вовлеченных в процесс образования живого вещества, не слишком велико. [c.167]

    Кроме ионов переходных металлов, высокая каталитическая активность характерна для ферментов. Ферменты — это вещества белкового происхождения, имеющие в своем составе определенные функциональные группы и катализирующие многие биохимические процессы в живых организмах. Основное их преимущество— высокая специфичность действия. Фермент обычно катализирует превращение только одного вещества— субстрата, что позволяет определить это со- [c.448]

    Выделим следующие функциональные группы компонентов катализатора каталитически активные вещества, промоторы, инертные вещества. Последние следует рассматривать как условно инертные , так как в некоторых случаях компоненты катализатора, считающиеся инертными, в действительности так или иначе влияют на активность катализатора. Классификация компонентов катализатора представлена на рис. 1. Согласно этой классификации, каждая из перечисленных функциональных групп делится на две или три подгруппы. Группа каталитически активных веществ содержит подгруппы смешанных и нанесенных активных компонентов, т. е. находящихся в составе смешанных и нанесенных катализаторов. Группы промоторов разделены на две большие подгруппы модификаторы — вещества, так или иначе (чаще положительно) влияющие на удельную каталитическую активность и селективность катализатора, и диспергаторы — вещества, оказывающие положительное влияние на удельную поверхность активного компонента. Условно инертные вещества подразделяются на следующие подгруппы наполнители, связующие, порообразую-щие. Функции этих веществ ясны из их наименования. [c.8]

    В ходе разработки рецептуры катализаторных покрытий исследована большая группа каталитически активных веществ, связующих и адгезивов В качестве катализаторов, вводимых в состав покрытия, испытаны промышленные дробленые катализаторы АГ1-64, АП-56, СТК-1-7, НТК-4, шихта меднохромбариевого катализатора ГИПХ-105-Б и 10 образцов ультрадисперсных порошков (УДП) оксидов металлов, включая оксиды Со, N1, Мп, Се, Ре, Сг, Си, 2г, как в виде индивидуальных оксидов, так и в форме их смесей. Растворы адгезивов и связующих представляли собой водно-минеральные композиции на основе технического алюмината кальция (талюма), гипса, силиката натрия, глины, алюмофосфатной связки. [c.34]

    Активность катализаторов, применяемых в реакциях гидрирования нитросоединений, зависит от их химического состава и физического состояния. Чаще всего применяются металлические катализаторы, особенно металлы VIII группы периодической системы — платина, палладий, родий, никель, кобальт, а также сплавы никеля и хрома, никеля и меди и другие. Доказано, что активность катализатора увеличивает находящиеся в них примеси некоторых веществ — загрязнения или же специальные добавки — так называемые активаторы. Большое значение имеет также степень измельчения катализатора. Максимальное раздробление достигается осаждением каталитически активного вещества на так называемый носитель. [c.120]

    Особенностью катализаторов на основе металлов VIII группы является наличие в их составе различных окислов и металлов, добавляемых к каталитически активному веществу. В качестве добавок к катализаторам на основе никеля и кобальта используются окислы тория, алюминия и других металлов, обладающие дегидратирующим действием, о чем уже упоминалось выше в связи с рассмотрением никелевых катализаторов синтеза метана. [c.129]

    Были попытки связать каталитическую активность вещества непосредственно с порядковым номером, атомным или молекулярным весом, объемом элементов и структурных групп, входящих в катализатор. Ряд таких попыток рассматривается в известной монографии Беркман, Морелла и Эглоффа [4]. Общий недостаток сопоставлений такого рода — их формализм, отсутствие теоретических концепций, позволяющих объяснить ту или иную корреляцию. Однако уже из таких сопоставлений можно сделать ряд выводов, существенных для подбора катализаторов. Бесспорным и общепринятым является вывод о высокой каталитической активности переходных металлов и их соединений в реакциях окисления, гидрирования и дегидрирования. Для реакций каталитического крекинга и дегидратации наиболее активны окислы элементов, находящихся в верхней и правой частях периодической системы. Типичные каталитические яды, по некоторым данным, размещаются преимущественно справа и внизу таблицы Д. И. Менделеева [5]. Указания, что катализаторами для данной реакции могут служить элементы той или иной группы периодической системы, часто встречаются в патентах. [c.6]

    Можно констатировать, что тетразамещенные производные мочевины обладают крайне низкой каталитической активностью тризамещенные производные относительно мало активны. Дизаме-щенные симметричные и несимметричные производные мочевины, а также монозамещенные производные мочевины обладают весьма ярко выраженными каталитическими свойствами однако лучшие катализаторы в рассматриваемом ряду — М,Н-дибутилмочевина и мочевина. На рисунке приведены данные, полученные и с другими веществами, выбранными для идентификации каталитически активных функциональных групп. [c.105]

    После того как Циглер установил, что алюминийтри-алкилы, являющиеся потенциальными кислотами Льюиса (акцепторами электронных пар), реагируют с этиленом с образованием олигомеров, т. е. полимеров, состоящих из нескольких мономерных частиц, начала развиваться новая область каталитической химии и были разработаны так называемые катализаторы Циглера — Натта. Это каталитические системы, в которых добавление галогени-да переходного металла к большой группе металлоорганических соединений приводит к образованию гетерогенных катализаторов, в присутствии которых обычно неактивный этилен не просто полимер из уется, а образует полимерный материал, упорядоченно построенный, с высоким молекулярным весом, почти кристаллический и с высокой плотностью. Пока ученые бились над выяснением механизма или пытались хотя бы идентифицировать каталитически активные вещества, уже был разработан процесс, позволяющий получать полиэтилен, полипропилен и т. д. в очень больших масштабах. [c.249]

    Первоначально носители вводились для разбавления активных компонентов и увеличения насыпного объема катализаторов, содержащих ценные металлы, например платину. Хотя и предполагалось, что носители инертны, все же в некоторых случаях отмечалось определенное взаимодействие между носителем и каталитически активным веществом. Это может являться одной из причин повышенной активности катализаторов на носителях. Виссе и де Ланж [5] показали, что в катализаторах окись никеля—кизельгур образуется гидросиликат никеля. Подобное явление может иметь место, правда, в меньшей степени, и в случае кобальтовых катализаторов синтеза, из окиси углерода и водорода [2, 6]. Возможно, что наиболее важной функцией носителя является способность обеспечивать подходящие для реакции распределение размеров пор и насыпной вес катализатора. Некоторые носители действуют подобно структурным промоторам, предотвращая чрезмерное спекание активного компонента. В качестве носителей обычно применяют кизельгур, пемзу, инфузорную землю, асбест, пористые гранулы окиси кремния или окиси алюминия, а также многие другие относительно инертные пористые твердые вещества. К этой группе относятся также связывающие агенты, которые цементируют тонкие порошки или гранулы с малой механической прочностью в частицы, достаточно прочные для применения в каталитических процессах. [c.34]

    Н. И. Кобозев показал, что, если наносить каталитически активное вещество на нейтральную подкладку (5102, уголь, Ва304) в малых концентрациях, то удается установить, что активность отдельных групп (ансамблей) атомов или молекул катализаторов зависит от числа частиц в ансамбле активными могут быть ансамбли из двух, трех и более частиц, а также и одиночные атомы. [c.284]

    Своеобразную и важную роль играют многие процессы ферментативного катализа. Катализаторами в них служат ферменты (энзимы), которые представляют собой сложные органические вещества, принадлежащие обычно к белкам с высоким молекулярным весом, вырабатываемым в животных или растительных организмах и обладающим высокой каталитической активностью. Каждый фермент катализирует определенный химический процесс или определенную группу химических превращений. Ферментативный катализ играет больщую роль п жизнедеятельности организмов и широко используется в промышленности н в быту, в особенности при переработке пищевых продуктов (хлебопечение, квашение, винокурение и др.). При этом основными являются процессы брожения, т. е. такие процессы, в которых изменение химического состава вещества происходит в результате жизнедеятельности тех или других микроорганизмов, например дрожжей, плесеней или соответствующих бактерий. Действующим началом в этих случаях служат различные ферменты, вырабатываемые этими микроорганизмами, Ферменты сохраняют свою активность и способндсть действовать и будучи выделенными из микроорганизмов. [c.494]

    Катализаторы, активными компонентами которых являются металлы переходной группы, склонны к дезактивации химическими веществами,с по собными отдавать электроны на незаполненные д -арбитали металла. Никелевые катализаторы очень чувствительны к встречающимся в сырье ядам сере, галогенам, фосфору, мышьяку, свинцу. Некоторые из них приводят к необратимому отравлению катализатора, при отравлении другими каталитическая активность восстанавливается до нормального уровня, если снова обеспечивается чистота исходного сырья. [c.42]

    При изомеризации происходит перестройка органических молекул без изменения молекулярного веса. Такие реакции очень распространены в органической химии и органической технологии. Они включают миграции двойных и тройных связей, сужение и расширение циклов, перемещение функциональных групп, изомеризацию углеродного скелета и т. д. Эти процессы можно проводить некаталитически и каталитически. Изомеризация является доказательством динамичности атомов в молекулах. Изомеризация играет огромную роль в органической технологии топлива, синтетических каучуков, химии поверхностно-активных веществ, химии душистых веществ, биохимии и т. д. Из-за громадного числа и разнообразия реакций изомеризации в этой главе будут рассмотрены лишь каталитические изомеризации углеводородов с учетом их практического значения. [c.553]

    В качестве моделей ферментов, как правило, используют синтетические органические молекулы, обладающие характерными особенностями ферментативных систем. Они меньше ферментов по размеру и проще по структуре. Следовательно, моделирование ферментов — это попытка воспроизвести на гораздо более простом уровне некий ключевой параметр ферментативной функции. Выявление определенного фактора, ответственного за каталитическую активность фермента в биологической системе, является трудоемкой задачей, требующей ясного представления о роли каждого компонента в катализе. Но, располагая подходящими моделями, мы можем оценить относительную важность каждого каталитического параметра в отсутствие других, не рассматриваемых в данный момент. Главное преимущество использования искусственных структур для моделирования ферментативных реакций состоит в том, что вещества можно создавать именно для изучения определенного конкретного свойства. Структура модели в дальнейшем может быть усовершенствована путем сочетания таких особенностей, которые дают наибольший вклад в катализ, и создания таких моделей, которые по своей эффективности действительно приближаются к ферментам. Таким образом, с помощью методов синтетической химии становится возможным создание миниатюрного фермента , который лишен макромоле-кулярного пептидного остова, но содержит активные химические группы, правильно ориентированные в соответствии с геометрией активного центра фермента. Этот подход называют биомимети-ческим химическим подходом к изучению биологических систем . Биомиметическая химия — это та область химии, где делается попытка имитировать такие характерные для катализируемых ферментами реакций особенности, как огромная скорость и селективность [350, 351]. Хочется надеяться, что такой подход в конце концов позволит установить связь между сложными структурами биоорганических молекул и их функциями в живом [c.263]

    Приведенная выще содержащая цистеин длинная углеводородная цепь образует мицеллы при содержании 0,003—0,05 моль/л константа скорости гидролиза /г-нитрофенилацетата в присутствии этого ПАВ соответствует реакции псевдопервого порядка. Это по-верхностно-активное вещество в 180 раз активнее, чем цетилтри-метиламмонийхлорид — мицеллообразующая система, не содержащая каталитических групп. [c.289]

    Клеточный метаболизм находится под контролем ферментов, а ферментам для проявления каталитической активности, как правило, необходимо особое вещество, или кофактор. В таких системах белковая часть фермента называется апоферментом, и она обычно неактивна. Кофактор — это или пон металла, или органическое вещество небелковой природы. Многие ферменты даже требуют присутствия обоих кофакторов. Прочно связанный кофактор называется простетической группой. Однако если органический кофактор начинает действовать только во время каталитического процесса, то он называется коферментом. Комплекс, образующийся в результате присоединения кофермента к апофер-менту, называется холоферментом (или, для краткости, ферментом).  [c.398]

    Поверхность катализатора — точнее активное высокомолекулярное вещество в целом — приобретает новые свойства в результате химического воздействия на него каталитически преобразующих веществ. Эти свойства зависят от химического характера образовавшихся функциональных групп. [c.74]

    Итак, создание синтетическим путем макромолекулы с уникальной устойчивой третичной структурой в принципе возможно. Трудно, однако, сказать, какова вероятность отбора при синтезе именно каталитически активной конформации. Тем не менее (даже без закрепленной третичной структуры) полимерные модели привлекают к себе столь широкое внимание, что число работ, посвященных этим системам, исчисляется сотнями. Однако обнаруживаемое увеличение реакционной способности функциональных групп, присоединенных к полимерной цепи, в большинстве изученных систем обусловлено лишь тривиальными эффектами среды (приводящими, например, к кажущемуся сдвигу р/(а) или же локальным концентрированием субстрата на полимере [62]. Те же эффекты играют основную роль и в мицелляр-ном катализе (см. 6 этой главы). Это не удивительно, поскольку мак-ромолекулярные частицы полимерного мыла (типа ХЬУ ) по таким свойствам, как характер взаимодействия гидрофобных и гидрофильных фрагментов друг с другом и с другими компонентами раствора, подвижность отдельных звеньев, диэлектрическая проницаемость и др., близки к мицеллам поверхностно-активных веществ [64]. Рассмотрим некоторые примеры. [c.105]

    Но существует и другая большая группа оксред-систем, для которых расхождение в потенциалах разных инертных материалов достигает сотен милливольт. Их отличительная черта — низкая скорость реакций электронного обмена и в растворах и на электродах в качестве примера уже назывались системы О21Н2О, МПО4 I Мп ". В последних для реализации обратимого электродного процесса необходимо, чтобы металл выполнял функции катализатора электронного обмена. Благодаря особенностям электронной структуры, способности адсорбировать многие вещества платина в качестве катализатора выделяется среди металлов. С ее помощью удалось создать много обратимых оксред-электродов. Но не во всех случаях каталитическая активность этого металла оказывается достаточной, в этом мы убедились на примере кислородного электрода. [c.547]

    Одним из существенных недостатков палладиевых покрытий в электргяехинке является его высокая каталитическая активность н ад сорбционная способность по отношеиню к водороду и органическнм веществам, что может оказывать большое влияние на повышение переходного сопротивления Этим, а также меньшей по сравнению с другими металлами платиновой группы химической стойкостью ограничивается его применение в промышленности. [c.139]

    Как видно из рис. 4.1, каталитическая активность сурьмы проявляется уже при 220 С (кривая 2), в то время как в отсутствие катализатора заметное. отщепление гликоля наблюдается лишь при 240 С (кривая 1). Но даже при 280 °С в начальной стадии поликонденсации каталитическая активность сурьмы (кривая 5) уступает каталитической активности марганца (кривая ). При поликонденсации продукта, имеющего сравнительно высокую молекулярную массу, скорость реакции при применении сурьмы практически равна скорости реакции при использовании марганца. Следовательно, по мнению авторов [7], в области низкой завершенности процесса, т. е. в начальной стадии поликонденсации, проявляется не чистотемпературная зависимость каталитического действия сурьмы, а способность сурьмы образовывать стабильные комплексные соединения с веществами, содержащими гидроксильные группы (например, калийантимонилтартрат). По-видимому, сурьма координационно связывается гидроксильными группами и не может взаимодействовать с карбонильной группой эфира. Следовательно, ее каталитическая активность не может проявляться при высокой концентрации гидроксильных групп, наблюдаемой в процессе переэтерификации и в начальной стадии процесса поликонденсации. В этой связи трудно объяснить значительную активность соединений сурьмы на завершающей стадии поли-конденсации, когда немногочисленные активные комплексы оказываются блокированными. Вопрос о том, повышает ли собственную каталитическую активность трехокись сурьмы в ходе процесса, остается спорным. По мнению Фонтана [6], данные [33, 34] малодостоверны. С другой стороны, выводы Циммерманна и Шаафа нуждаются в дополнительной проверке, поскольку нет уверенности в том, что весь катализатор был растворен в реакционной массе с самого начала процесса. [c.62]


Смотреть страницы где упоминается термин Каталитически активные вещества группы: [c.131]    [c.397]    [c.245]    [c.235]    [c.85]   
Основы полярографии (1965) -- [ c.386 , c.387 , c.397 ]




ПОИСК





Смотрите так же термины и статьи:

Активность каталитическая

Каталитически активные вещества

Каталитически активные вещества и функциональные группы

Каталитически активные групп

Каталитические группы



© 2024 chem21.info Реклама на сайте