Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение содержания железа (III) в водном растворе его соли

    Влияние свойств и состава растворителя на качество растворов. В качестве растворителя используют пресные и минерализованные воды с различной степенью кислотности pH и минерализации. Растворы технического полиакриламида и других полимеров в воде проявляют свойства полиэлектролитов, поэтому их вязкость зависит от наличия низкомолекулярных электролитов. Соли, имеющиеся в растворителе, обычно снижают вязкость раствора (рис. 4.5, 4.6, 4.7). Вероятность содержания хлорного железа, хлористого кальция и хлористого натрия и соответствующих ионов в закачиваемых растворах полимеров на практике достаточно высока. Например, ионы железа в водные растворы ПАА могут попадать как на стадии их приготовления, так и в процессе движения раствора по промысловым коммуникациям и в нагнетательных скважинах. Уменьшение вязкости растворов при использовании в качестве растворителя минерализованной воды вместо пресной наблюдается и для других типов полимеров. Например, даже незначительная минерализация, которой обладает водопроводная и озерная вода, способствует существенному снижению вязкости гипана (рис. 4.8). Кривые вязкости и pH растворов для кислых сред (рН<7) имеют четкую взаимозависимость (см. рис. 4.5). Это в определенной степени объясняет закономерности изменения вязкости в минерализованных растворителях. По мнению исследователей этой проблемы в кислой среде происходит подавление диссоциации карбоксильных групп полимера, и цепочка молекулы сворачивается в клубок . С возрастанием pH раствора в результате усиления диссоциации карбоксильных групп происходит увеличение вяз- [c.106]


    Химический состав содержащихся в масле твердых загрязнений можно определять лабораторными методами количественного анализа и инструментальными методами. Обычно химические элементы, входящие в состав загрязнений, имеют небольшую концентрацию, что затрудняет применение, например, метода титрования. Для определения в масле содержания железа практическое применение находят главным образом колориметрический или фотоколориметрический методы. Эти методы основаны на способности водных растворов солей железа при реакции с сульфосалициловой кислотой давать окрашенные растворы, имеющие разную оптическую плотность в зависимости от содержания в них железа. [c.34]

    Определению мешают А1, 1п (образуют флуоресцирующие комплексы), Си, Со, N1 (собственная окраска ионов), соли Ре(1П), Т1(1П), хроматы (редокс-действие на краситель), оксикислоты, дикарбоновые кислоты, многоатомные спирты, сахар, фосфаты, фториды (образуют с галлием более прочные комплексы, чем реагент I). Галлий предварительно экстрагируют эфиром из 6 НСЬв присутствии Т1С1з. Следы железа, частично увлеченные в экстракт, отделяют методом хроматографии на бумаге или ионного обмена. Комплекс галлия с реагентом II в водном растворе практически не флуоресцирует, но в бутаноле, амиловом и гексиловом спиртах уже при дневном свете дает интенсивную кроваво-красную флуоресценцию, которая достигает максимума в растворе амилового спирта. Оптимальное значение pH экстракции 4,7. Интенсивность флуоресценции зависит от тех же факторов, которые указаны для соединения галлия с реагентом I, а также от содержания воды в слое амилового спирта. [c.139]

    При определении содержания ванадия, никеля, железа, цинка, хрома и меди в нефтяных и других жидких органических продуктах [46, 47] 1—10 г пробы смешивают с равным количеством концентрированной серной кислоты и нагревают до полного испарения кислоты. Кокс дожигают в муфельной печи при 500—600 °С, а полученную золу растворяют в нескольких каплях водного раствора серной кислоты (1 1 по объему). Раствор выпаривают досуха, сухой остаток растворяют в 1 жл водного раствора, содержащего 5 объемн. % серной кислоты, 0,5% хлористого натрия (буфер) и 0,005% кобальта (внутренний стандарт). Если в образце присутствует хром, то для его перевода в растворимое состояние золу сплавляют с 20—30 мг пиросернокислого калия. Эталоны готовят растворением в воде сернокислых солей соответствующих металлов. Ванадий и хром вводят в форме ванадата аммония и двухромовокислого калия. Все эталоны содержат по 5 объемн.% серной кислоты, 0,5% хлористого натрия и 0,005% кобальта. По три капли раствора наносят на плоский торец графитового электрода особой чистоты марки В-3 и жидкую часть испаряют при нагреве на электроплитке. [c.160]


    Для фазового анализа широко применяются химические методы. При этом используется обычно различная (избирательная) растворимость отдельных фазовых компонентов материала. Так, например, в фазовом анализе глин определяют содержание глинистого вещества (водного силиката алюминия и железа), полевого шпата (алюмосиликатов ш,елочных или щелочноземельных металлов) и кварца. Сначала глину обрабатывают в определенных условиях соляной или серной кислотой в результате глинистое вещество разлагается, а кварц и полевой шпат остаются без изменения. Отфильтровав раствор солей алюминия и железа, выделившуюся при разложении силиката аморфную кремневую кислоту переводят в раствор, нагревая с раствором соды. Взвесив нерастворимый остаток, можно по потере в весе вычислить количество глинистого вещества. После этого остаток обрабатывают плавиковой или борофтористоводородной кислотой, которые легко разлагают полевой шпат и очень медленно действуют на кварц. [c.14]

    Осаждение РЗЭ в виде фторидов используется для их отделения от многих элементов. При осаждении РЗЭ из водного раствора их солей действием раствора фтористоводородной кислоты образуется аморфный слизистый, труднофильтруемый и промываемый осадок. Фторидный метод, как и оксалатный, позволяет отделить РЗЭ от железа, алюминия, титана, циркония, урана (VI), ниобия, тантала и некоторых других элементов. В ходе анализа обычно отделяют все РЗЭ от сопутствующих элементов путем осаждения в виде фторидов с последующего их осаждения в виде гидроксидов или оксалатов. Выделенное суммарное количество РЗЭ анализируют на содержание отдельных РЗЭ, используя, например, фотометрическое определение церия (IV), спектрофотометрические методы определения неодима, празеодима и т. д. (по собственному поглощению их солей), а также спектральное определение отдельных РЗЭ в их сумме. [c.198]

    Определение содержания железа (III) в водном растворе его соли [c.279]

    Водный раствор сернокислого физостигмина не должен окрашиваться в фиолетовый цвет от прибавления раствора хлорного железа (салициловокислая соль). При испытании водного раствора (1 100) на лакмусовую бумажку допустима лишь слабо красная окраска. 1 г сернокислого физостигмина при сжигании должен оставлять остаток не более 0,001 г. Возможное содержание влаги устанавливается при количественном определении. [c.485]

    Бензольный раствор тиурамата меди обесцвечивается лишь при встряхивании с водными растворами солей серебра и ртути. На этом основана методика определения серебра в рубидии. Содержание серебра определяют по ослаблению окраски бензольного слоя (при 435 ммк) после взбалтывания его с раствором пробы [404]. Показана возможность фотометрического определения сульфатной серы по окраске ализарина, который переходит в неводный слой в результате реакции между сульфатами и ализа-ратом циркония [405]. Фотометрическое определение фторидов рекомендуется производить по уменьшению экстракции роданида железа (П1). Отмечается, что чувствительность метода значительно повышается, если изменения оптической плотности раствора роданида железа измерять в органической фазе [406[. [c.257]

    Количественное определение соединений титана основано на восстановлении водных растворов солей титана (IV) в соли титана (III) атомарным водородом, образующимся при растворении цинка в серной кислоте, и титровании раствором железоаммо-нийтлх квасцов, окисляющих Ti + в Ti +. При титровании индикатором служит роданид аммония, образующий с солями железа (III) красный раствор роданида железа. Соли титана (III) являются сильными восстановителями, легко окисляются кислородом воздуха, поэтому определение содержания соединений титана проводят в токе инертного газа. Нри этом протекают следующие pie акции  [c.184]

    Плазмохимический синтез. Принципиально этот способ не отличается от распыления спиртовых или водных растворов солей, однако значительно более высокая температура и скорость Пv aзмeннoй струи при плазмохимическом синтезе изменяют морфологические характеристики шихты, обеспечивая эффект, в определенном смысле аналогичный размолу в струйной мельнице. В связи с весь.ма коротким временем пребывания капель в зоне плазменной струи процесс термического разложения сульфатов полностью не завершается и для его интенсификации в плазмохимический реактор наряду с газом-носителем вводится восстановительная добавка — природный газ. Однако это обстоятельство резко уменьшает содержание свободного оксида железа в шихте, что при последующем спекании в воздушной атмосфере отформованных изделий таких ферритов, как марганец-цинковые, может привести к их растрескиванию. Для устранения этого недостатка, по-видимому, целесообразным будет проведение дополнительной операции низкотемпературного [c.206]



Смотреть страницы где упоминается термин Определение содержания железа (III) в водном растворе его соли: [c.154]    [c.448]    [c.455]    [c.208]    [c.26]    [c.376]   
Смотреть главы в:

Сборник лабораторных работ по аналитической химии -> Определение содержания железа (III) в водном растворе его соли




ПОИСК





Смотрите так же термины и статьи:

Железа соли

Железо водные растворы

Железо растворах солей

Определение железа в растворе

Определение железа в растворе его соли

Определение содержания Fe в растворе

Определение содержания R-соли

Определение содержания железа(Н) в растворе

Раствор солей

СОДЕРЖАНИЕ I Растворы

Содержание Р-соли



© 2025 chem21.info Реклама на сайте