Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводороды содержание в маслах

    Седиментометрические и реологические исследования, а также поляризационная микроскопия позволили объяснить действие ультразвука на процесс кристаллизации твердых углеводородов при депарафинизации и обезмасливании. При обработке суспензий твердых углеводородов ультразвуком разрушаются связи между кристаллами твердых углеводородов, что приводит к разрушению образованной ими пространственной структуры при дальнейшем охлаждении эта структура не восстанавливается. Сами же кристаллы парафина при обработке ультразвуком почти не разрушаются. В результате резко снижается структурная вязкость системы и исчезает динамическое предельное напряжение при сдвиге. Все это создает условия для роста кристаллов с образованием агрегатов, обусловливающих высокие скорость и четкость отделения твердой фазы от жидкой, что приводит к увеличению скорости фильтрования, выхода депарафинированного масла и снижению содержания масла в твердой фазе. Однако применение метода ультразвуковой обработки суспензий твердых углеводородов при депарафинизации и обезмасливании пока не вышло из стадии лабораторных исследований. [c.163]


    Технические парафины состоят в основном из твердых (при комнатной температуре) парафиновых углеводородов и из небольшого количества жидких (при комнатной температуре) углеводородов другого строения. Содержание последних в белом горном воске составляет от 2 до 5% и значительно менее 1% в очищенных парафинах. Эта часть ( масло ) состоит из ароматических и неароматических углеводородов (в основном из нафтенов и, возможно, изопарафинов). Содержание масла в твердом парафине является одним из важных свойств, о котором необходимо иметь точные сведения как в процессе производственного контроля, так и при изучении парафина. [c.289]

    Таким образом, депарафинизация узких фракций вследствие более однородной структуры твердых углеводородов и условий, обеспечивающих нормальный рост кристаллов, дает возможность достаточно полно отделить твердую фазу от раствора и получить депарафинированное масло с требуемой температурой застывания, а гач — с низким содержанием масла. [c.138]

    Поскольку рост кристаллов твердых углеводородов происходит постадийно, этот оптимум должен иметь место на каждой стадии охлаждения, что обеспечивает образование крупных кристаллов и, как следствие, увеличение скорости фильтрования и выхода депарафинированного масла при одновременном снижении содержания масла в твердой фазе. Это достигается порционной подачей растворителя в процессе охлаждения сырья. При порционной подаче растворителя в процессе депарафинизации создаются условия для разделения кристаллизацией высоко- и низкоплавких углеводородов [27 32, с. 121 53—58]. При первом разбавлении сырья расход растворителя должен быть таким, чтобы из раствора выделились только наиболее высокоплавкие углеводороды, образующие кристаллы наибольших размеров при прочих равных условиях. Тогда при дальнейшем охлаждении суспензии происходит самостоятельная кристаллизация низкоплавких твердых уг- [c.150]

    Повышение выхода депарафинированного масла, скорости фильтрования суспензии твердых углеводородов и получение парафинов с низким содержанием масла могут быть достигнуты при применении растворителя переменного состава, а именно, с повы- [c.152]

    Однако несмотря на высокую эффективность н-алканов при-обезмасливании петролатумов высокая стоимость делает их применение на промышленных установках маловероятным. В связи с этим в качестве модификаторов структуры твердых углеводородов при обезмасливании петролатумов были исследованы фракции, выделенные из мягкого и твердого парафинов холодным фракционированием и комплексообразованием с карбамидом, которые, по данным газо-жидкостной хроматографии и масс-спектрометрического анализа, содержали 35—40% (масс.) н-алканов С20— 2 Применение таких фракций в процессе обезмасливания петролатума показало (рис. 72), что скорость фильтрования суспензии петролатума увеличивается при более высоких их концентрациях, чем при введении индивидуальных н-алканов. Полученные при этом церезины характеризуются более высокой температурой плавления (рис. 73) и меньшим содержанием масла. [c.185]


    Содержание твердых углеводородов в масле, [c.577]

    С целью получения мягкого парафина и увеличения выхода масел в лабораторных условиях проведено низкотемпературное обезмасливание гача III ступени фильтрации с температурой плавления +29°С и содержанием масла 40%. Бьши найдены режимы (температура фильтрации минус 25°С, разбавление 1 5) получения из гача III ступени фильтрации депарафинированного масла и мягкого парафина. В полученном мягком парафине содер ание нормальных парафиновых углеводородов ,j- j составляет 67%, содержание масла не более 2,5% масс.. Благодаря процессу перекристаллизации из гача III ступени фильтрации можно получить депарафинированное масло с температурой застывания минус 10 - минус 15°С в количестве 16%, считая на исходный рафинат. [c.133]

    Поскольку целевой фильтрат должен содержать более 40 вес.% углеводородов, не образующих комплекса с карбамидом, при его кристаллизации появляются мелкие кристаллы и при фильтрации получается плохо проницаемый сильно растрескивающийся осадок. Это приводит к повышенному содержанию масла в защитном воске. Для улучшения условий кристаллизации растворитель к сырью добавляют порционно в следующих соотношениях. В тройник [c.181]

    Работники Грозненского научно-исследовательского института нефти считают [12], что содержание непредельных углеводородов в маслах обычно колеблется в пределах 3—10%. По мнению некоторых специалистов и очищенные масла должны обладать некоторым количеством ненредельных углеводородов, вполне совместимым с удовлетворительной стойкостью к окислительной полимеризации и к смолообразованию. [c.393]

    Кристаллизатор смешения представляет собой аппарат колонного типа, разделенный на четыре секции, куда подается растворитель аппарат оборудован перемешивающим устройством и отражателями, способствующими лучшему контакту сырья с растворителем. По этому новому методу депарафинизации холодный растворитель вводится в нагретое сырье (порциями). Такое порционное введение способствует образованию крупных кристаллов твердых углеводородов, что повышает скорость разделения суспензии на фильтрах и снижает содержание масла в гаче. Кроме того, скорость охлаждения сырья в кристаллизаторах смешения в 2— [c.86]

    В результате депарафинизации в две ступени образуются два продукта депарафинированное масло и концентрат твердых парафиновых углеводородов содержание масла в этом концентрате зависит, в основном, от выбранных условий разбавления и кристаллизации. Однако достигнуть глубокого обезмасливания пара-фината и церезина, а также разделения твердых парафинов по их групповому хи- чическому составу и температуре плавления двухступенчатой фильтрацией неуда- Ьариочт- ется. Получить различные марки парафинов и церезинов, наряду с низкозастываю-щим 1маслом, можно только при осуществлении трехступенчатой схемы депарафинизации и обезмасливания. На рис. 1 показаны основные принципиальные трехступенчатые схемы совмещения депарафинизации и обезмасливания, освоенные в промышленном масштабе. Вариант 1 используется на Новоуфимском заводе [13] и на заводе в Филадельфии [8—10] вариант 2—ня заводах в Талсе, Саламанке 4]. вариант 3 запатентован фирмами Техасо Девелопмент и Юнион Ойл [1]. [c.97]

    При этом процессе масляная фракция, содержащая парафин, смешивается с растворителем высокого удельного веса. Вследствие этого фаза масло — растворитель имеет более высокий удельный вес, чем выделяющийся парафин [38]. Для этой цели применяют смеси бензола (22% объем .) и дихлорэтана (78% объеми.) или других хлорированных углеводородов, как трихлорэтилен, четыреххлористый углерод и т. д. Таким путем удается непрерывно выделять парафин независимо от его кристаллического строения. Обычно весовое соотношение растворителя и масла поддерживают равным 3 1. Выделенный парафин смешивают с холодным растворителем и снова центрифугируют, получая парафпп с весьма низким содержанием масла. [c.47]

    Сообщается о разработке процесса облагораживания котельных топлив Н-011 В лабораторных условиях осуществлено деалкилирование метилнафталиновой фракции. Наряду с нафталином получено 6—15% продуктов деструкции нафталина Изучалась возможность гидрообессеривания сырой нефти (2,81% серы) с целью получения мазутов высокого качества. Обессеривание на 40—68% без заметного крекинга. Активность катализаторов сначала быстро падала, затем оставалась на уровне 30% Осуществлена гидроочистка сырого парафина из высокосернистых нефтей с температурой конца, кипения 480 °С и содержанием масла 5г0,8% расход водорода 0,15%. Срок службы катализатора без регенерации более 1000 ч Без сообщения условий гидрирования указывается, что при гидрогенизации пироконденсата (выход гидрогенизата 100%, расход водорода 0,64%) получается 47% бензола, 18 Х толурла, 10% ароматических углеводородов Се и 11% растворителя [c.65]


    При абсорбционном методе можно использовать более низкое давление и более высокие температуры. Газовая смесь под давлением в противотоке контактирует с поглотительным маслом, в котором растворяются все углеводороды, имеющие 2 и более атомов углерода. Метан и водород при этом не абсорбируются и выводятся с установки. Затем газообразные углеводороды выделяются из поглотительного масла и разделяются ректификацией, что после удаления водорода и метана не представляет значительных трудностей. Освобожденное от газообразных углеводородов поглотительное масло возвращается на установку. Выделение газов из поглотительного масла можно провести таким образом, что при этом уже будет иметь место разделение на фракции с определенным числом атомов углерода. Дальнейшее разделение на отдельные компоненты путем перегонки не представляет труда. Часто получаемая при фракционировании чистота уже достаточна для последующей переработки. Абсорбционный метод обладает большими достоинствами для концентрпрования газов с небольшим содержанием олефиновых углеводородов. [c.45]

    Строительство ВРУ в районе новых производств возможно только в том случае, если загрязнение воздуха в месте воздухозабора не превышает норм. Иначе должны осуществляться мероприятия по очистке газовых сбросов. При эксплуатации ВРУ систематически по графикам должны проводиться анализы технологических потоков на содержание в них ацетилена и других углеводородов, сероуглерода, масла. В случае обнаружения взрывоопасных примесей, превышающих предельно допустимое содержание их в технологических потоках, следует принимать меры, предусмотренные инструкцией. Необходимо строго поддерживать установленный температурный режим в процессе воздухоразделения во избежание выноса углеводородов из регенераторов в блок разделения и исключения опасности взрыва. Следует своевременно осуществлять контроль качества адсорбента и при необходимости подвергать его пересеиванию, осуществлять досыпку иля замену его. [c.374]

    Так как стандартные определения содержания, масла при составлении, спецификации отнимают много времени и плохо воспроизводимы (в пределах от 0,1 до 1,0% вес.), был предложен метод ультрафиолетовых спектров поглощения. Удельное поглощение на длине волны 230 m/t является надежной характеристикой содержання масла в парафинах из любого сырья или из парафинов, полученных в результате переработки (например, полученных при депарафинизации растворителя), из которых масло было выделено физическими методами без селективного разделения по типам колец углеводородов. Удельное поглощение парафинов на 230 m/t прямо пропорционально содержанию масла, как это установлено стандартным методом ASTM 721-47. Для данной фракции отклонения составляют около [c.289]

    Парафины иного происхождения (например, из углей или получаемые в различных процессах по реакции Фишера — Тропша) могут содержать 15—20% углеводородов изостроения, а неочищенные парафинистые фракции (гач, петролатум) с пониженной точкой плавления — также циклические углеводороды. Состав жидких фракций (керосин, газойль) зависит от природы исходной нефти и процессов ее переработки. Содержание масла в твердых парафинах — важный критерий выбора сырья для окисления. [c.148]

    Содержание нафталина в нефтяном среднем масле редко превосходит 20 7с. Эту цифру скорее следует считать высокой. В зависимости от содержания нафталина находится и уд. вес среднего масла. Могут быть случаи, и они не редки, когда эта константа ниже, чем для легкого масла, что объясняется, во-первых, присутствием нераз-ложенных нефтяных дестпллатов, а во-вторых, значительным расширением смеси из нафталина и углеводородов среднего масла. [c.424]

    На ряде зарубежных заводов для получения низкозастывающих масел осуществляется по новой технологии процесс 011сЬ1П [68, с. 153 87]. В этом процессе использован оригинальный метод кристаллизации парафина, заключающийся в прямом введении холодного растворителя в нагретое сырье при энергичном перемешивании в кристаллизаторе, снабженном перемешивающим устройством. Образующиеся сильно разрозненные и компактные агломераты кристаллов твердых углеводородов обеспечивают высокие скорость фильтрования и выход депарафинированного масла. Затем в скребковых кристаллизаторах температуру суспензии понижают до требуемой температуры фильтрования. Кристаллы парафина отделяются от м асла филы1ро.ванием в одну или более ступеней в зависимости от заданного содержания масла в парафине. Дополнительной обработки не требуется. Для предотвращения образования льда в оборудовании, работающем с холодным растворителем, применяется система осушения растворителя. Обычно в качестве растворителя используют смесь метилэтилкетона с метилизобутилкетоном или толуолом. По этой технологии можно депарафинировать сырье практически любой вязкости и получать масла с низкой температурой застывания при увеличении скорости фильтрования суспензии на 40—50% и уменьшении содержания масла в гаче до 2—15% (масс.) при одноступенчатом фильтровании. В случае двухступенчатого фильтрования получается парафин с содержанием масла менее 0,5% (масс.). [c.165]

    Одним из основных факторов, определяющих степень выделения и скорость отделения твердых углеводородов от жидкой фазы в процессах депарафинизации и обезмасливаиия, является качество депарафинируемого сырья. Как указывалось выше, большая часть твердых углеводородов относится к изоморфным веществам, способным к совместной кристаллизации с образованием смешанных кристаллов, причем в зависимости от условий выделения из растворов эти кристаллы могут быть разных структуры и размеров. При прочих равных условиях форма и размер этих кристаллов определяются фракционным составом сырья. С повышением пределов выкипания фракции уменьшается полнота отделения кристаллов твердых углеводородов от растворов масляной части, что связано с повышением концентрации твердых углеводородов и изменением их химического состава. При охлаждении раствора сырья с большим содержанием твердых углеводородов в соответствующем растворителе в начальный момент кристаллизации образуется слишком много зародышей кристаллов, на которых при дальнейшем охлаждении кристаллизуются выделяющиеся из раствора твердые углеводороды. В этом случае конечные кристаллы имеют малые размеры, что приводит к уменьшению скорости фильтрования и выхода депарафииированного масла при увеличении содержания масла в твердой фазе. Рост кристаллов определяется типом углеводородов, выделяющихся из растворов в виде зародышей, на которых затем кристаллизуются остальные компоненты твердой фазы [6]. [c.136]

    При обезмасливании твердых углеводородов этого же сырья критическая концентрация кетона в растворителе повышается до 91% (об.). Этот метод дает возможность сравнивать смешанные растворители с целью выбора их оптимального состава. Экономичнее тот растворитель, который при прочих равных условиях позволяет проводить депарафинизацию и обезмасливание при более высокой температуре процесса и обеспечивает достаточный выход депарафииированного масла с низкой температурой застывания и минимальное содержание масла в парафине или церезине. Так как растворяющая способность кетонов растет с увеличением числа атомов углерода в радикале, для депарафинизации и обезмас-ливания за рубежом применяют [48] кетоны большей молекулярной массы. Основными достоинствами этих кетонов по сравнению с другими растворителями являются большая скорость фильтрования и меньший температурный эффект депарафинизации [39, 48]. [c.144]

    Исследование растворимости компонентов масел в алифатических спиртах [38] показало возможность применения последних в смеси с углеводородными компонентами, так как спирты плохо растворяют жидкие углеводороды масляного сырья при температурах депарафинизации. В качестве растворителей для обезмасли-вания и депарафинизации используют также смеси хлорорганических соединений, таких как дихлорэтан и метиленхлорид (процесс 01—Ме) [41, 42, 50]. Этот метод применим для депарафинизации масел любой вязкости и позволяет получать масла с температурой застывания, близкой к температуре фильтрования. При одноступенчатом фильтровании с этим растворителем можно получить масло с температурой застывания —20°С и парафин с содержанием масла 2—6% (масс.). Недостатком всех хлорсодерж.ащих растворителей является их термическая нестабильность При температурах выше 130—140 °С и образование продуктов разложения, вызывающих коррозию аппаратуры. [c.145]

    От кратности растворителя к сырью в большой мере зависит не только выход депарафинированного масла, но и содержание масла в гаче или петролатуме. При увеличении кратности разбавления сырья растворителем уменьшается концентрация масла во всем растворе и в той его части, которая остается в твердой фазе. Это приводит к увеличению четкости отделения твердых углеводородов от жидкой фазы и некоторому повышению выхода депарафинированного масла. Выбор оптимальной кратности растворителя к сырью зависит и от конечной температуры охлаждения раствора, которая определяется природой растворителя и требуемой температурой застывания депарафинированного масла, а в процессе обезмасливаиия — температурой плавления твердых углеводородов. Чем ниже температуры конечного охлаждения и фильтрования суспензии, тем выше вязкость среды и оптимальная кратность растворителя к сырью. [c.147]

    Улучшение показателей процесса депарафинизации и обезмас-ливания достигается изменением состава кетон-ароматического растворителя, наиболее распространенного в этих процессах. Повышение содержания кетона в растворителе приводит к увеличению отбора твердых углеводородов из масляного сырья. Для легких дистиллятных фракций содержание кетона в растворителе может быть увеличено до 55—60% (об.). При увеличении содержания кетона процесс отделения твердых углеводородов от масляной фазы можно проводить при более высоких температурах, особенно при обезмасливании гачей. Однако при этом необходимо обеспечивать высокую растворимость в кетон-ароматическом растворителе жидких углеводородов, так как в противном случае из-за выделения второй масляной фазы повышается содержание масла в твердой фазе. [c.152]

    Одной из причин повышенного содержания масла в парафнне при обезмасливании гачей являются условия промывки осадка на фильтрах. Работы, проведенные в этом направлении [7, 61—64], показывают, что наиболее полное удаление масла из осадка твердых углеводородов достигается при помощи устройств для создания сплошного слоя промывной жидкости над его поверхностью [61]. Такие устройства применительно к существующим барабанным вакуумным фильтрам позволяют снизить содержание масла в твердых углеводородах до 10—13% (масс.), что примерно равно этому показателю при двухступенчатом фильтровании. Для улучшения результатов обезмасливаиия предложено [62, 63] увеличить расход растворителя на холодную промывку примерно в [c.154]

    Помимо содержания масла на твердость парафина влияет химический состав относительное молекулярное распределение н-алканов (более узкие фракции имеют более высокую твердость и более пологую температурную кривую пенетрации), относительное количество легкоплавких фракций, относительное содержание н-алканов, изо- и циклоалканов. При повышенном содержании изо- и циклоалканов пенетрация возрастает и влияние этих углеводородов на пенетрацию намного больше, чем влияние молекулярного веса м-алканов. Кроме того, пенетрация в значительной степени зависит от наличия в парафине ароматических углеводородов и их вязкости. [c.58]

    Для получения масел с низкой температурой застывания применяется процесс 01—Ме [42, 50, 68, 69], в котором растворителем служит смесь дихлорэтана (50—70% масс.), выполняющего роль осадителя твердых углеводородов, и метиленхлорида (50— 30% масс.), являющегося растворителем жидкой фазы. Использование этого растворителя позволяет получать депарафинированные масла с температурой застывания, близкой к температурам конечного охлаждения и фильтрования. Одним из достоинств процесса 01—Ме является высокая скорость фильтрования суспензии твердых углеводородов, достигающая 200 кг/(м -ч) на полную поверхность фильтра. В работах [42, 70] показана возможность иопользования для депарафинизаци и рафинатов широкого фракционного состава смесей дихлорэтана с дихлорметаном и дихлорэтана с хлористым пропиленом. Эти растворители позволяют проводить процесс депарафинизации с ТЭД в пределах О—1 °С, причем в случае двухступенчатого фильтрования содержание масла в парафине не превышает 2% (масс.). Наряду с этим большим достоинством хлорорганических растворителей является возможность исключить из технологической схемы установки систему инертного газа, так как эти растворители негорючи и взрывобезопасны. Общим недостатком всех хлорорганических растворителей является термическая нестабильность при 130—140 °С с образованием коррозионно-агрессивных продуктов разложения. Для выделения твердых углеводородов из масляных фракций предло- [c.158]

    В первый период освоения процесса депарафинизации выделение твердых углеводородов из рафинатов проводили в одну ступень. На таких установках твердые углеводороды, являющиеся сложной смесью компонентов, различающихся по структуре молекул, но содержащих парафиновые цепи нормального или сла-боразветвленного строения, кристаллизовались совместно, образуя мелкие смешанные кристаллы, а при депарафинизации сырья широкого фракционного состава — эвтектические смеси. Такой способ кристаллизации приводил к образованию труднофильтруемых осадков, в результате чего выход масла и скорость отделения твердой фазы были недостаточно высоки, а повышенное содержание масла в гаче усложняло процесс получения парафинов. В связи с этим встал вопрос о раздельной кристаллизации высоко-и низкоплавких углеводородов, который был решен внедрением в промышленность двухступенчатой депарафинизации. Этот процесс позволил увеличить выход депарафинированного масла, значительно повысить скорость фильтрования суспензии и снизить содержание масла в гаче, так как твердые ароматические углеводороды, уменьшающие размер кристаллов парафиновых и нафтеновых углеводородов, концентрируются в низкоплавких компонентах, кристаллизующихся во второй ступени процесса. [c.159]

    В ГрозНИИ разработан процесс, совмещающий обезмасливание парафинового дистиллята с фракционной кристаллизацией парафина, предусматривающий полный противоток растворителя по отношению к сырью и позволяющий получать широкий ассортимент парафинов с температурой плавления от 45 до 68 °С [75, 76]. Этот процесс включает три ступени фильтрования, предназначенные для получения глубокообезмасленного парафина с температурой плавления 52—54 °С, который затем подвергают фракционной кристаллизации на четвертой и пятой ступенях фильтрования. Такой процесс позволяет получить высокоплавкий парафин с температурой плавления до 58°С и низкоплавкий — с температурой плавления 50—52 °С. Одним из условий эффективности этого процесса является ограниченное содержание масла в растворителе. Достоинством его является не только гибкость, но и повышенное содержание нормальных парафиновых углеводородов как в высокоплавком (95,8% масс.), так и в низкоплавком (92,1% масс.) парафинах. Это объясняется раздельной кристаллизацией твердых углеводородов, при которой изопарафины с длинными прямыми участками цепи и нафтены с длинными боковыми цепями кристаллизуются в последнюю очередь. Разработке процесса обезмас-ливания с последующей фракционной кристаллизацией парафина предшествовали теоретические исследования [7, 64], в результате которых предложены уравнения, позволяющие с учетом требуемой глубины обезмасливаиия парафина и содержания масла в исходном сырье определять среднюю концентрацию масла в жидкой фазе и затем оценить коэффициент концентрирования на каждой стадии вакуумного фильтрования (образование осадка, его холодная промывка и подсушка), а следовательно, и общий концентрирующий эффект вакуумного фильтра. [c.160]

    В настоящее время на большинстве нефтеперерабатывающих заводов производство масел и парафинов (церезинов) осуществляется на совмещенных установках депарафинизации и обезмасли-вания, причем обезмасливание петролатумов протекает при меньших скоростях фильтрования и с меньшей четкостью отделения твердой фазы от жидкой, чем обезмасливание гача. Это связано с тем, что высокомолекулярные углеводороды, входящие в состав петролатума, содержат в молекулах наряду с длинными парафиновыми цепями нафтеновые и ароматические кольца. Такие углеводороды обладают резко выраженной склонностью к образованию мелкодисперсных структур в условиях процесса обезмас-ливания, что снижает скорость фильтрования суспензий твердых углеводородов и производительность установки по сырью. Кроме того, повышенное содержание масла в церезине ограничивает области его применения. В связи с этим на многих заводах церезины не вырабатывают, а петролатум используют как компонент мазута. [c.176]

    Рассматривая зависимость скорости фильтрования суспензии петролатума от содержания присадки АФК, можно выделить две области, в пределах которых резко возрастает скорость фильтрования. В этих же областях наблюдается значительное изменение качества получаемых церезинов это область малых концентраций присадки (0,005—0,05% масс.) и область высоких концентраций (1—2% масс.). Больший интерес представляет область малых концентраций с точки зрения как экономики, так и протекания самого процесса обезмасливаиия. Скорость фильтрования суспензии петролатума в области малых концентраций в 1,8 раза выше, а содержание масла в церезине в 2 раза ниже, чем в области высоких концентраций, при одновременном повышении температуры плавления церезинов на 1 —1,5°С. При обезмасливании мангышлакского петролатума, который отличается от петролатума, получаемого при переработке западно-сибирских нефтей, более высоким содержанием парафино-нафтеновых углеводородов и меньшим содержанием смол, для достижения максимальной скорости фильтрования (рис. 64) необходима более высокая концентрация М 0дификат01ра структуры твердых углеводородов. [c.177]

    Депарафинизация рафинатов адсорбционной очистки проходит при большей скорости фильтрования, большем отборе депарафи-нированиого масла и меньшем содержании масла в петролатуме. По аксплуатационным свойствам автомобильные масла адсорбционной очистки из восточных нефтей Не уступают маслам фенольной очистки того дее сырья и превосходят их по термоокисли-тельиой стабильности [19]. Маловязкие масла из восточных нефтей типа трансформаторных после адсорбционной очистки обладают лучшими низкотемпературными свойствами, чем масла из того же сырья фенольной очистки. Трансформаторное масло адсорбционной очистки из сернистой восточной нефти более богато ароматическими углеводородами и серосодержащими соединениями, чем масло фенольной очистки . выход его на 25% больше и оно более стабильно против окисления, что объясняется различиями в групповом составе этих масел. Характеристика трансформаторных масел различных способов очистки из восточных сернистых нефтей приведена ниже [13, 19]  [c.276]

    Назначение. Удаление из парафинсодержащих продуктов жидких углеводородов с целью получения парафинов и церезинов с требуемым содержанием масла. [c.254]

    В нефтеперерабатывающей промышлеиности получают высокомолекулярные соединения нефти в качестве целевых твердых нефтепродуктов путем регулирования их физических превращений. Твердые углеводороды обычно получают пз дистиллятны.ч и остаточных нефтепродуктов, которые в зависимости от степени очистки делятся на гачи и петролатумы (содержание масел от 5 до 30%), технические (содержание масел 1—5%) и глубо-коочищеиные твердые нефтепродукты (содержание масла до 0,5—1%). По данным Л. П. Ка аковой [45] твердые углеводороды состоят нз смесн различных углеводородов в неодинаковом соотношении (табл. 19). Для туймазинской нефти с повышением конца кипения фракции уменьшается содержание нормальных алканов и нафтеновых углеводородов с боковыми цепями нор.мального строения и увеличивается содержание угле- [c.167]

    При холодном фракционировании парафин разбавляют растворителем, раствор охлаждают и полученную суспензию разделяют на вакуумных барабанных фильтрах. Осадок на фильтре представляет собой высокоплавкий глубокообезмасленный парафин, обладающий повышенной твердостью, а раствор фильтрата — низкоплавкий парафин, в котором концентрируются так называемые мягкие парафины, содержащие повышенное количество углеводородов изо- и циклического строения, и находится до 1—3 вес.% масла. Холодное фракционирование проводят в несколько ступеней фильтрации наиболее распространены двухступенчатые схемы. Сырьем служат концентраты парафина обычно с невысоким содержанием масла (до 10 вес.%). Первая ступень предназначается для обезмасливания, вторая — собственно для фракционирования. Между ступенями фильтрации проводят частичную или полную перекристаллизацию парафина. [c.131]

    Температура фильтрации. При обезмасливании парафина, так же как и при депарафинизации, одним из важнейших показателей является температурный режим фильтрации. Чем ниже темиература фильтрации, тем больше отбирается парафина и тем ниже его температура плавления. Это объясняется следующим. По мере снижения температуры фильтрации в состав парафина вовлекаются все более легкоплавкие углеводороды, в том числе изо- и циклоалканы. Кристаллическая структура парафина при этом ухудшается, содержание масла возрастает и механические свойства парафина ухудшаются (в частности, увеличивается иенетра-ция). [c.146]

    Кристаллизация в среде инертного газа. Для каждого сырья существуют определенные температурные пределы, в которых можно существенно улучшить кристаллическую структуру суспензии при охлаждении путем подачи в нее инертного газа (азота или двуокиси углерода) [141 —143]. Действие инертного газа объясняется сокращением длительности диффундирования молекул твердых углеводородов к центрам кристаллизации и устранением местной перенасыщенности раствора. На поверхности пузырька инертного газа сорбируется часть содержащихся в сырье асфаль-то-смолистых веществ, которые таким образом становятся подвижными центрами кристаллизации, способствующими образованию дендритных агрегатов. Подача инертного газа оказывает и чисто механическое воздействие, разобщая кристаллы и снижая структурную вязкость суспензии. Скорость фильтрации при применении инертного газа увеличивается в 1,4—2,0 раза, а содержание масла в гаче снижается на 40—60 вес. %. Длительность обработки суспензии 12—15 мин, расход инертного газа 0,4—0,8 объема на [c.155]


Смотреть страницы где упоминается термин Углеводороды содержание в маслах: [c.244]    [c.255]    [c.139]    [c.35]    [c.133]    [c.118]    [c.140]    [c.153]    [c.163]    [c.164]    [c.166]    [c.168]    [c.177]   
Каталитические процессы переработки угля (1984) -- [ c.173 , c.174 ]




ПОИСК







© 2025 chem21.info Реклама на сайте