Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение реакций ионного замещения

    Применение реакций ионного замещения [c.380]

    Область применения реакций электрофильного замещения. До сих пор рассмотрение ароматических 5д-реакций проводилось при допущении, что замещаемой группой является водород. Конечно, замещение водорода — самая важная разновидность реакции, и поэтому оно изучено наиболее широко и всесторонне. Однако большое число других групп также может подвергаться замещению, и эти группы удобно разделить на два класса 1) заместители, замещаемые на ион водорода, и 2) заместители, замещаемые на иной электрофил, отличный от иона водорода. [c.235]


    В сульфит-ионе атом серы является нуклеофильным центром, поэтому, этот реагент находит широкое применение для синтеза сульфокислот с помощью реакций нуклеофильного замещения и присоединения к кратным связям. Алкилгалогениды и эпоксиды легко реагируют с сульфит-ионом (уравнения 15 [2] и 16 [16]). В этих реакциях в качестве нуклеофила выступает сульфит-ион, а не бисульфит-ион, даже в тех условиях, когда бисульфит преобладает [9, 17]. Обычные пространственные ограничения для реакций типа 5м2 действуют и в этих превращениях эти реакции не удается провести при попытке замещения у третичного атома углерода вместо реакции замещения происходит элиминирование. Однако с трифенилметанолом и аналогичными соединениями, из которых образуются карбокатионы, не способные к элиминированию, получаются сульфонаты [9]. Сульфиты выступают также в качестве нуклеофилов и в реакциях замещения с активированными ароматическими субстратами, например при замещении фторид-иона в 2,4-динитрофторбензоле [9]. [c.514]

    Из реакций ароматического замещения наиболее тесно связана с проблемой карбониевых ионов реакция электрофильного изотопного обмена водорода. Эта реакция являлась одной из главных областей применения кинетического метода к изучению устойчивости карбониевых ионов. Водородный обмен в ароматическом соединении, катализируемый кислотой НА, включает в основном две кинетически важные стадии, показанные в уравнении 4.29) для замещения дейтерия на протон [c.126]

    Предельные углеводороды (алканы). Гомологический ряд. Структурная изомерия. Углеводородные радикалы. Гибридное состояние углерода р . Номенклатура. Получение алканов. Химические свойства. Реакции замещения ионные и радикальные. Галогенирование, сульфохлорирование и сульфоокисление. Нитрование. Окисление алканов. Отдельные представители алканов. Нефть и продукты ее переработки. Органические вяжущие и их применение в строительстве. УФ и ИК спектры предельных углеводородов. [c.169]

    Одним из наиболее полезных применений изотопного обмена было изучение реакций замещения в координационных соединениях. Оказалось возможным установить соотнощение электронной конфигурации центрального атома металла со скоростью обмена между координированными ионами и радиоактивными ионами в растворе. Многие комплексы обменивают свои анионы очень быстро, в то время как для других комплексов скорости обмена невелики. Это зависит, по-видимому, от заселенности -орбиталей в центральном атоме металла  [c.422]


    При обработке ароматических нитросоединений цианид-ионом происходит кине-замещение (см. разд. 13.3) отщепляется нитрогруппа и в молекулу вводится карбоксильная группа, причем всегда в орто- и никогда в мета- или пара-положение п() отношению к уходящей группе. Область применения этой реакции, носящей название перегруппировки Рихтера, весьма разнообразна [198]. Как и в случае других реакций нуклеофильного ароматического замещения, наилучшие результаты получаются при наличии электроноакцепторных групп в орто- и па-ра-положениях, однако выходы низкие, обычно не менее 20 % и никогда не выше 50 %, [c.39]

    Природная глина является продуктом коагуляции, проходящей в геологическом масштабе. В глинистых суспензиях коагуляция в различных ее формах также является доминирующим состоянием. Соответственно все процессы приготовления, обработки и применения буровых растворов направлены по пути ослабления коагуляции (пептизация и разбавление), ее сдерживания или предотвращения (стабилизация, коллоидная защита), регулирования (ингибирование) или усиления (электролитная, температурная агрессия, концентрационное загущение). Эти изменения смещают равновесие в сторону усиления или ослабления связей между глинистыми агрегатами, влияют на их лиофильность и дисперсность. В результате устанавливаются промежуточные равновесные состояния, которые и определяют технологические показатели буровых растворов. Таким образом, все протекающие в них изменения являются различными формами единого коагуляционного процесса, управляемого общими. закономерностями системы глина — вода, в которой этот процесс реализуется, и его физико-химическим механизмом. Проявлением этого механизма является модифицирование твердой фазы путем поверхностных реакций замещения и присоединения, включающих в себя гидратацию, ионный обмен и необменные реакции. Такого рода модифицирование, осуществляемое обработкой химическими реагентами, определяет уровень лиофильности системы, сдвигая его в должном направлении. При этом получают развитие факторы, влияющие на дисперсность, — набухание, пептизация или, наоборот, структурообразование и агрегирование. [c.58]

    В косвенных методах используют экспериментальные зависимости скоростей процесса или отдельных стадий от стерических и электронных свойств субстратов и ингибиторов, от полярности, донорно-акцепторной способности растворителя, от ионной силы, различных добавок, реагирующих с промежуточными частицами (например, радикалов), и т. д. Способы количественного учета некоторых из этих эффектов изложены в главах при рассмотрении факторов, влияющих на скорость химических реакций, и корреляционных уравнений. Остановимся на двух подходах, имеющих важное значение для установления механизма методе изотопного замещения и измерения скоростей реакций в магнитных полях. Применение первого метода традиционно в катализе. Второй метод только начинают использовать. [c.482]

    Авторы сохранили общий строй книги, но для облегчения пользования материалом отказались от разделения процессов на реакции, проходящие в присутствии и в отсутствие щелочи, воспользовавщись классификацией по типам реакций. Введены отдельные разделы по хиральным и полимерносвязанным катализаторам, которые отсутствовали в первом издании, а также новые разделы относительно нуклеофильного ароматического замещения и реакций металлоорганических соединений в условиях межфазного катализа. Основную часть книги занимает гл. 3, посвященная практическому использованию межфазного катализа, где достаточно подробно освещены вопросы техники проведения межфазных реакций, а затем последовательно обсуждено применение межфазного катализа в реакциях замещения (синтез галогенидов, включая фториды, синтезы нитрилов, сложных эфиров, тиолов и сульфидов, простых эфиров, Ы- и С-алкилирование, в том числе амбидентных ионов), изомеризации и дейтерообмена, присоединения к кратным С—С-связям, включая неактивированные, присоединения к С = 0-связям, р-элиминирования, гидролиза, генерирования и превращения фосфониевых и сульфониевых илидов, в нуклеофильном ароматическом замещении, в различных реакциях (ион-радикальных, радикальных, электрохимических и др.), в металлоорганической химии, при а-элиминировании (генерировании и присоединении дигалокарбенов и тригалометилид-ных анионов), окислении и восстановлении. В каждом разделе приведены конкретные методики проведения реакций в различных условиях межфазного катализа и таблицы примеров синтеза разнообразных классов соединений. В монографии использовано более 2000 литературных источников. [c.6]

    Проблему разброса состава в аллильных сольволитических реакциях можно было бы просто разрешить, если допустить, что один или оба аллильных изомера подвергаются замещению одновременно по двум конкурирующим Sj l и S 2 механизмам. Основания для того, чтобы отвергнуть эту возможность и принять, что реакция протекает по механизму, промежуточному между предельными S l и Sj 2, уже обсуждались. Сольволиз несимметричных аллильных соединений по промежуточному механизму дает смесь изомерных продуктов с большим преобладанием продукта без перегруппировки, чем смесь продуктдв, получаемая по предельному S l механизму. Если промежуточный механизм включает активное промежуточное соединение, а не переходное состояние, это промежуточное соединение должно отличаться некоторым образом от свободного мезомерного карбониевого иона предельного механизма. Трудно представить промежуточное соединенье, отличное от карбониевого иона, и в этом — главный камень преткновения в применении гипотезы о пограничном механизме к реакциям аллильного замещения. Эту трудность моншо разрешить, применив структурную гипотезу Стрейтвизера [57]. Переходное состояние для аллильного сольволиза, идущего по Sj 2 механизму, представлено формулой 4  [c.422]


    Эти же авторы [1072] изучили реакцию ионного хлорирования полистирола в темноте в присутствии Jз и РеС1з. В этих условиях протекает только реакция замещения, как в ароматических ядрах, так и в главной цепи, ускоряющаяся с повышением концентрации катализатора. Установлено, что при хлорировании заместитель вступает преимущественно в п-, затем в о-положение. При дальнейшем хлорировании образуется 3,4-, 2,5- и в меньшей степени 2,4-дихлорзамещенные фенильные группы, причем степень полимеризации полистирола при хлорировании уменьшается, особенно в случае применения в качестве катализатора РеС1з. Авторы предполагают, что деполимеризация идет через образование промежуточного карбониевого иона по механизму диспропорционирования изопарафинов в присутствии катализатора Фриделя — Крафтса. [c.225]

    Следует отметить один факт, касающийся применения четвертичных ионов в качестве катализаторов фазового переноса. Вообще говоря, большие липофильные четвертичные ионы являются мягкими с позиций теории ЖМКО [25]. Как следствие, эти четвертичные ионы имеют тенденцию образовывать ионные пары с наиболее мягкими анионами, имеющимися в растворе. Например, если в растворе присутствуют иодид- и гидроксил-ионы, то четвертичный ион должен образовать ионную пару с иодид-ионом. Если же желательна реакция с гидроксил-ионом, то катализатор будет отравлен присутствием иодид-иона. Источником такого иона, как иодид, может быть первоначально введенный катализатор или уходящая группа в реакции замещения. Следовательно, выбирая условия реакции, нужно рассматривать все компоненты катион, анион, нуклеофил и нуклеофуг. [c.21]

    Применение ионитов в других областях биологии дает некоторые йерспективы использования их в промышленности для улучшения процессов или качества продукта. С помощью ионитов удается осадить коллоидные. примеси из растворов бактериальных антигенов и токсоидов. Таким способом с изменением ионной силы или pH растворов при деионизации или реакциях ионного обмена очищены антиген стафилококка и тетанус или токсоид дифтерии [681. Для замещения высоких концентраций сульфата аммония физиологическими концентрациями. хлорида натрия при изготовлении антитоксина дифтерии использовалась комбинация диализа и ионообмена со смесью ионитов в натриевой и хлоридной формах [17]. С помощью ионитов определены требования к содержанию ионов металлов для роста бактерий [c.622]

    В шестидесятых годах Уинстейи на основании анализа накопленного материала по реакциям нуклеофильного замещения создал концепцию ионных пар в применении к органическим молекулам. Согласно этой концепции, процесс мономолекулярного нуклеофильного замещения (5№1) осуществляется не в одну стадию, включающую диссоциацию молекулы на ионы, а происходит через последовательные стадии, в которых образуются ионные пары различного типа, названные им внутренними и внешними. Впоследствии более употребительными стали названия контактная (тесная) и сольватно разделенная (рыхлая) ионные пары. Сопоставляя константы скорости рацемизации и сольво-лиза оптически активных соединений, Уинстейн доказал существование по крайней мере двух различных ионных интермедиатов [c.5]

    Обсуждается применение ионно-парного механизма к реакциям сольволиза S g 1-типа на примере исследования стереохимии ионнопарного возврата при сольволизе л-замещенных бензгидрил--бензоатов. Проведено критическое рассмотрение доказательств общности ионно-парного механизма для реакций нуклеофильного замещения у насыщенного атома углерода. Делается вывод, что образование ионных пар в сольволизе - лишь предельный случай "пуш-пульной" схемы Свена и Лангсдорфа, в которой стадия образования и разрыва связи кинетически независимы и разделены во времени. Илл. - I, табл. - 4, библиогр. - 19 назв. [c.295]

    Применение органических осадителей требует создания определенных услови1[ и прежде всего надлежащей величины pH раствора. Причину этого понять нетрудно. Выше указывалось, что при образовании внутрикомплексных солей происходит замещение водорода кислотной группы реагента ионами металла при этом в раствор переходят ионы водорода, как это следует, например, из приведенного выше уравнения реакции между N1 + и диметилглиоксимом. Ясно, что положение равновесия должно зависеть от концентрации Н" , т. е. от величины pH раствора. Диметил-глиоксим (и другие подобные ему органические реагенты) ведет себя как слабая кислота. Поэтому к рассматриваемой реакции применимо все то, что говорилось ранее о значении величины pH при осаждении малорастворимых солей слабых кислот. И здесь, если известна величина ПР осадка и константа кислотной ионизации реагента, можно вычислить величину pH, при которой достигается полное осаждение. [c.125]

    Здесь изомеризация наблюдается даже в отсутствии олефинов или алкилгалоида. В этом процессе расходуется кислород. Имеющиеся данные указывают на окислительный механизм, при котором углеводород либо непосредственно атакуется под влиянием катализатора, либо через стадию промежуточного окисления самого катализатора. Воздействие на углеводород, по-видимому, приводит к образованию ионов карбония, необходимых для инициирования реакции изомеризации. Вероятная гипотеза, подтверждаемая некоторыми эксперимент 1льными доказательствами (при применении бромистого алюминия), заключается в том, что часть галоидалюминия атакуется кислородом, причем высвобождается галоид и образуется окись алюминия или, более вероятно, оксигалоид алюминия. Галоид реагирует с парафином, образуя алкилгалоид, который, как уже было показано, является наряду с галоидводородом инициатором цепной реакции изомеризации. Это подтверждается [45] тем, что бром как промотор может быть замещен кислородом. [c.19]

    Механизм обратного замещения. В реакции Фриделя-Крафтса с рядом первичных производных проявляются некоторые особенности, затрудняющие принятие для этих производных карбоний-ионного механизма, Например, реакция бензола с н-пропилхлоридом идет с выходом в 40% пропилбензола при 35° и с выходом в 60% при —6°. Сообщалось также, что применение в реакции м-пронилового спирта вызывает образование исключительно н-пропилбензола. Еще более удивительным является наблюдение, что неопентилбензол получается по реакции Фриделя—Крафтса из неопентилового спирта и бензола в присутствии хлористого алюминия [172]. [c.438]

    Эритроциты в крови можно по ряду свойств рассматривать так же, как частички гидрофобной эмульсии. На их поверхности адсорбированы молекулы белков, аминокислот и ионы электролитов. Все они сообщают эритроцитам определенный отрицательный заряд, а противоионы создают некоторый диффузный слой. При различных патологических процессах в организме, когда в кровн увеличивается содержание некоторых видов белков (либо особого глюкопротеида, относящегося к а-глобулинам, либо при инфекционных заболеваниях Y-глoбyлинoв), происходит процесс, очень напоминающий ионообменную адсорбцию место ионов электролитов на поверхности эритроцитов занимают белки, заряд которых ниже, чем у суммы замещенных ими ионов. В результате заряд эритроцитов понижается, они быстрее объединяются и оседают (ускоряется реакция оседания эритроцитов — РОЭ). Этот процесс зависит еще от ряда факторов содержания других белковых фракций и мукополисахаридов, концентрации эритроцитов в крови, наличия в крови микробов, наконец, расположения сосуда, в котором наблюдается РОЭ (в частности, скорость ее выше в наклонно расположенном капилляре). Оседание эритроцитов протекает сходно с процессом седиментации гидрофобного коллоида. Как показали исследования при помощи микрокинематографии (Кигезен), к имеющимся в крови агрегатам и монетным столбикам присоединяются отдельные эритроциты укрупнившиеся агрегаты оседают вначале быстро, а потом медленнее, так как в нижних частях капилляров их расположение становится настолько плотным, что частично сохранившиеся у них заряды начинают в большей мере противодействовать сближению частиц. Структура этого осадка напоминает губку чтобы его уплотнить, необходимо выжать оттуда воду, причем чем плотнее осадок, тем труднее это достигается. Поэтому в клинических исследованиях обычно не ожидают завершения оседания эритроцитов, а регистрируют результаты спустя 1—2 ч после начала реакции. Учитывая, что скорость процесса меняется на разных этапах, было предложено изучение его динамики измерением величины оседания эритроцитов каждые 15—30 мин (так называемая фракционная РОЭ). Этот метод представляет значительный интерес и находит широкое применение. [c.167]

    Этот синтез применим для получения альдегидов или кетонов (гл. И Кетоны , разд. В.8). Енолацетаты легко превращаются ир.Г Взанмодействии с ацетатом ртути(П) и хлористым калием в хлор-мер кур альдегиды или хлормеркуркетоны, которые образуют е по-лизамещенными производными хлористого метила р-замещепные альдегиды или кетоны [371. Выходы умеренные применение этой реакции ограничено, поскольку в ней используются замещенные метилгалогениды, которые легко образуют карбониевые ионы. [c.56]

    Качество проведения эксперимента зависит от подбора электролита. Хорошие результаты дает применение водного раствора солей KзPe( N)g и К4ре(СЫ)е (красная и желтая кровяная соль) с добавкой фона КаОН [14]. Роль фона сводится к снижению подвижности ионов под влиянием электрического ноля. У поверхности э.тектродов на модели и в потоке идут реакции замещения сг=1  [c.405]

    Липис, Пожарский, Фомин [150] провели спектрофотометрическое исследование, используя метод, примененный ими при изучении нитратных систем [149]. Экстремумы на кривых зависимости е от концентрации Н2504 для ряда полос поглощения совпадали между собой при концентрациях Н2504 0,5 1,0 2,4 3,7 5,3 М. Авторы работы [150] предполагают, что обнаруженным экстремумам может соответствовать последовательное замещение воды гидратной сферы ионом 504 вплоть до образования [Ри(504)8] при кислотности >5,8 м. Замена кислоты на сульфат аммония, в противоположность нитратным средам, благоприятствует комплексообразованию вследствие малой конкуренции реакции H+-f 5042+ 2Н504 . Повышение температуры понижает устойчивость сульфатных комплексов. [c.44]

    Присоединение к олефинам реагентов, содержащих О—Н-связь, происходит по правилу Марковникова (атом О оказывается у более замещенного углеродного атома), что по-видимому объясняется участием карбениевого иона. Если гидроксилсодержащее соединение является слабой кислотой, например вода или спирт, необходим катализ протонной кислотой или кислотой Льюиса (ср. с реакцией гидратации), однако более сильные кислоты сами выступают в качестве источника протона. Далее, наличие в олефине алкильных заместителей (стабилизующих появляющийся карбение-вый ион) и напряжение в молекуле увеличивают его реакционную способность. Классическим способом гидратации простых олефинов, первоначально осуществлявшимся в промышленном масштабе, является присоединение серной кислоты, приводящее к кислому алкилсульфату, с последующим его гидролизом. Другие реакции присоединения гидроксилсодержащих соединений к олефиновым углеводородам не нашли широкого применения в синтезе, по-видимому, вследствие склонности более сложных карбениевых ионов к перегруппировкам. Некоторые примеры этих реакций даны уравнениями (91) — (93)  [c.201]

    В то же время главное алифатическое свойство, а именно легкость реакции замещения с нуклеофильными реагентами, например гиДроксильным ионом, аммиаком и аминами, может быть результатом переходного резонансного состоя-ния структур типа ХИ1, которое возникает вследствие понижения энергии активации. Реакция хлористого пикрила с такими слабыми нуклеофильными реагентами, как вода, является совершенно аналогичной [116]. Применение кислотного катализа при аминолизе хлорпиримидинов доводит этот эффект до максимума, способствуя образованию структуры XIV [117]. Было установлено, что аминолиз 4-хлорпиримидина контролируется также степенью нуклеофильности реагирующего амина [118]. Так, 2-амино-4-хлор-6-метилпиримидин легко взаимодействует с анилином в соляной кислоте и только едва реагирует с более нуклеофильными реагентами—пиперидином и диэтиламином. Однако в буферных растворах при pH 10 реакция проходит легко и с двумя последними соединениями. Об алифатическом характере указанных галогенопроизводных свидетельствует также и проводимая по Фриделю—Крафтсу реакция 4-хлор-5-этоксиметил-2-метилпиримидина с бензолом, не имеющая места в менее активированном ряду пиридина [119]. Кроме того, эти соединения часто легко восстанавливаются цинковой пылью и другими мягкими восстановителями. Хотя описано много примеров частичного нуклеофильного обмена или восстановления полигалогенопиримидинов, относительная реакционная способность положений 2 и 4 (или 6) экспериментально точно не установлена по-видимому, в обоих случаях она должна быть приблизительно равной. Соотношение получаемых соединений в большей степени зависит от легкости их выделения. [c.208]


Смотреть страницы где упоминается термин Применение реакций ионного замещения: [c.450]    [c.150]    [c.159]    [c.61]    [c.43]    [c.64]    [c.308]    [c.71]    [c.456]    [c.475]    [c.263]    [c.322]    [c.186]    [c.20]    [c.456]    [c.108]    [c.39]    [c.439]    [c.440]   
Смотреть главы в:

Руководство по аналитической химии 1971 -> Применение реакций ионного замещения

Руководство по аналитической химии -> Применение реакций ионного замещения




ПОИСК





Смотрите так же термины и статьи:

Замещение применение

Реакции замещения

Реакции с применением ионитов



© 2025 chem21.info Реклама на сайте