Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбонаты щелочные

    Естественно, закономерности в свойствах различных веществ или в параметрах различных реакций должны быть более простыми, если при сопоставлении ограничиться веществами, близкими между собой по химическому составу и строению. Условимся называть однотипными соединения, обладающие аналогичной формулой и различающиеся только одним элементом, причем эти элементы должны быть аналогами (т. е. принадлежать к одной подгруппе периодической системы) и находиться в одинаковом валентном состоянин. Однотипными можно считать, например, карбонаты щелочно-земельных металлов. Можно пользоваться понятием о различной степени однотипности. Так, карбонаты кальция, стронция и бария являются более однотипными между собой, а карбонаты магния и тем более бериллия менее подобны им по термодинамическим свойствам, в соответствии с большим отличием строения электронной оболочки их катионов. [c.291]


    Катализатор получают пропитыванием носителя в водном растворе нитрата никеля. Носитель получают смешением 90—99 мас.% окиси алюминия с 0,2—3 мас.% связки, состоящей из 0,1—2,8 мас.% крахмала (предварительно обработанного кислотой и затем нагретого до температуры 100—200° С), 0,05—2,0 мас.% карбонатов щелочных металлов 0,5—2,5 мас.% фосфатов металлов (А1, 81, Ре, 2г, Мо). Гомогенную смесь формуют, сушат в формах и прокаливают при 1250—1350° С. Затем пропитывают в водном растворе нитрата никеля и снова прокаливают [c.73]

    Карбонаты — соли угольной кислоты. Известны два ряда солей средние (карбонаты) и кислые (гидрокарбонаты). Без разложения плавятся только карбонаты щелочных металлов. Остальные карбонаты при нагревании разлагаются  [c.135]

    Установлен ряд эффективных каталитических систем - это соли щелочных и щелочноземельных металлов оксиды кальция, железа, цинка, магния металлы - Ре, №, Со. Примером могут служить добавки карбонатов щелочных и щелочноземельных металлов при паровой газификации каменного угля, заметно снизившие температуру (с 1000 С до 700 С) и давление (с 7 МПа до 3,5 МПа). Промышленных примеров весьма мало, поскольку фирмы не публикуют данные о составе каталитических добавок. [c.99]

    Константа гидролиза карбоната щелочного металла [c.133]

    По этой схеме взаимного усиления гидролиза, приводящего к образованию основания и кислоты, взаимодействуют соли железа (П1) и хрома (1П) с карбонатами щелочных металлов, соли алюминия и хрома с сульфидом аммония, алюминаты с солями аммония, растворы которых имеют кислую реакцию, и некоторые другие. [c.139]

    При действии на растворы, содержащие Си +, карбонатов щелочных металлов образуется основной карбонат меди (зеленовато-голубой осадок)  [c.587]

    Эти присадки предназначены для добавления к сернистым и высокосернистым дизельным топливам. Их действие основано на нейтрализации агрессивных продуктов сгорания сернистых топлив (окислы серы, главным образом трехокись) или на переводе их в неагрессивные продукты. В качестве таких присадок предложены амины, нитраты и карбонаты щелочных металлов, нафтенаты металлов, органические фосфиты и др. [c.331]

    Введение щелочных металлов значительно ускоряет процесс выгорания углеродистых отложений по сравнению с образцом оксида железа без добавок. Количество СО2, выделяющееся в начальный период регенерации (см. рис. 2.24, б), возрастает с увеличением атомной массы щелочного металла соответствующим образом уменьшается и время полного выгорания углерода. Таким образом, скорость выгорания углерода с оксида железа, промотированного щелочными металлами, при 450 °С возрастает в ряду Li < Ыа < К < КЬ < Сз. В этих условиях образования ферритов не происходит, и щелочные металлы при регенерации существуют в виде самостоятельных фаз карбонатов металлов [108]. Известно [3], что карбонаты щелочных металлов существенно ускоряют [c.44]


    Можно погрузить горлышко сосуда в воду или разбавленную соляную кислоту. Если в сосуде находится раствор щелочи или карбонатов щелочных металлов, то почти всегда, спустя некоторое время (иногда несколько дней), пробку удается извлечь. [c.1044]

    Вещества, применяемые в качестве противокоррозионных присадок. Механизм их действия. В качестве противокоррозионных присадок к топливу предложено много веществ различных природы и свойств. Для нейтрализации кислых продуктов сгорания серы, образующихся в двигателе, предложено добавлять к топливу соединения щелочного типа аммиак и его соли, амины, нитраты и карбонаты щелочных металлов [12  [c.180]

    В качестве присадок, снижающих коррозию продуктами сгорания сернистых топлив, успешно испытаны некоторые жирные амины [28], например амины молекулярной массы 85—90 с содержанием азота 9—11%. Добавление 0,8% этой присадки к сернистому дизельному топливу позволяет значительно снизить коррозию деталей цилиндро-поршневой группы продуктами сгорания. Положительные результаты дает в аналогичном топливе добавление нитратов или карбонатов щелочных металлов [12] износ поршневых колец двигателя значительно снижается. Коррозионный износ деталей двигателя при применении сернистых дизельных топлив уменьшается также при добавлении нафтенатов некоторых металлов, например цинка. Так, добавление 0,3% этой присадки к дизельному топливу с содержанием серы около 1% позволило снизить износ примерно в 2 раза и довести его до значений, не превышающих износ при применении малосернистого топлива. Количество нагара при добавлении этой присадки не уменьшается, поэтому в случае ее введения в топливо в масле должна обязательно содержаться противонагарная присадка [18]. [c.184]

    В 1922 г. Франц Фишер и Ганс Тропш получили путем каталитической обработки водяного газа (С0 Н2=1 1) при дйвлении порядка 100 ат и 400° над железным катализатором, пропитанным карбонатами щелочных металлов, продукт, разделявшийся на масляный и водный слои [8]. По мере уменьшения щелочности металла (от лития через натрий и калий к рубидию и цезию) относительное количество маслянистого продукта, т. е. водонерастворимых высокомолекулярных соединений, увеличивалось. [c.72]

    Кварц. Во многих случаях вместо стеклянной посуды приме-някт посуду из плавленого кварца. Она чрезвычайно устойчива к резким изменениям температуры кварц плавится при высокой температуре (около 1700°С). Едкие щелочи и даже карбонаты щелочных металлов разрушают кварцевое стекло, кислоты же на него не действуют (кроме HF и отчасти Н3РО4). [c.45]

    Различный ход титрования Naj Os с метиловым оранжевым и с фенолфталеином можно использовать для определения едких щелочей и карбонатов щелочных металлов (например, NaOH и Naa Oa) при совместном их присутствии в растворе (см. 71). [c.279]

    Без разложения окисление с фтало-цианином Си при 100—105 С, с фталоцианином Со при 80—85 °С, с фталоцианином N1 нри 85—90 °С Благоприятное действие, хороший эффект достигается при очистке фталоцианинов Исследования механизма реакции показывают, что радикалы, образующиеся при разложении КМГП, действуют как ускорители Добавка гидроокиси или карбоната щелочного металла ускоряет окисление [c.276]

    Как и в случае окиси этилена, здесь происходит разрыв связей С—О в кольцевой системе реагента. Аналогично реакции с окисью этилена, оксиалкилирование фенолов этиленкарбонатом протекает достаточно полно (т. е. с хорошими выходами продуктов), если в реакцию вводятся феноляты или свободные фенолы в присутствии карбонатов щелочных металлов Водные растворы щелочей здесь не используются, так как в них происходит быстрый гидролиз этиленкарбоната с выделением СОз, однако возможно применение спиртово-щелочных растворов с ограниченным содержанием спирта. 11ри избытке спирта быстро протекает реакция его переэтерифика-ции с этиленкарбонатом и оксиэтилированный продукт не образу ется . [c.35]

    Катализатор получают сооса- Углеводороды ждением соединений никеля парафинового и алюминия из водных рас- ряда (С4—С15) творов с добавлением водных растворов окислов, гидроокисей и карбонатов щелочных и щелочноземельных металлов с последующей обработкой при температурах 400— [c.145]

    Катализатор получают соосаждением солей никеля и алюминия из них водных растворов с добавлением окиси, гидроокиси или карбоната щелочных или щелочноземельных металлов. Никель (28—75 мас.%) в катализа-ре восстановлен до металлического состояния. Количество щелочных или щелочноземельных металлов, добавляемых в катализатор, зависит от процентного содержания А1аОз в катализаторе и составляет 0,75— [c.145]

    Присадки, снижающие лако-, нагарообразование и износ цилинд-ро-поршневой группы двигателя. Такие присадки предназначены для добавления к сернистому дизельному топливу для нейтрализации агрессивных продуктов сгорания (окислы серы, главным образом трехокись). К ним относятся амины, нитраты и карбонаты щелочных металлов, нефтенаты металлов и др. Большое значение в снижении нагаров и износов в двигателе имеют присадки к применяемому маслу. [c.205]


    Карбонаты щелочных металлов осалсдают из растворов солей железа(П) белый карбонат жглеза 11) РеСО . При действии воды, содержащей СОз, карбонат железа, подобно карбонату кальция, частич[ю переходит в более растворимую кислую соль Ре(НС0з)2. В виде этой соли железо содержится в н[)иродных железистых водах. [c.689]

    Напротив, Б приоутствии щелочей или карбонатов щелочных материалов им фт место превращение альдегида в опирт  [c.456]

    Промышленных методов очистки газов от H2S и Oj весьма много. Из них наибольший интерес представляет очистка этанол-аминами, позволяюп ая при некоторых условиях совместить удаление H2S, СО2 и Н2О. Кроме этаноламиновой очистки для этой цели применяется водная промывка и очистка водными растворами карбонатов щелочных металлов. Этаноламиновая очистка углеводородных газов от HjS и СО 2 была разработана еще в 1930 г. Сейчас этот метод широко применяется в разных вариантах при подготовке сырья для нефтехимического синтеза. При очистке природных газов применяется водный раствор моноэтаноламина концентрацией 15— 20%. Помимо низкой стоимости моноэтаполамин характеризуется высокой реакционной способностью, стабильностью и легкостью регенерации. Температура кипения моноэтаноламина 170° С, он неограниченно растворяется в воде. [c.161]

    Сильными основаниями в системах МФК являются фториды [1235, 1297, 1361, 1605, 1638] и твердые карбонаты щелочных металлов 128, 1048], хотя они и несколько слабее, чем водный NaOH [2]. При проведении реакций в условиях МФК с карбонатами в качестве оснований смесь нагревают обычно до 80— 100 °С или даже выше (см. также с. 67). Дитрих и Леен [359] показали, что комбинация криптофикс[2.2.2](5) /NaNH2/TГФ способна депротонировать дифенил- и трифенилметан. [c.95]

    Карбонаты элементов подгруппы ИА получают действием СОа на гидроксиды пли обменными реакциями солей Э + в растворах с карбонатами щелочных металлов. Карбонаты Ве и Mg легко гидролизуются, образуя основные карбонаты. Основные карбонаты Ве имеют переменный состав, Mg образует 4Mg Oз Mg(OH) а-бНгО, легко отщепляющий одну молекулу НаО Средние карбонаты Nig и [c.318]

    Из водных растворов ванадатов в зависимости от pH и концентрации можно выделить орто-, пиро (ди)-, тримета- и декава-надаты (многие из них образуют кристаллогидраты). Больилин-ство ванадатов окрашены, многие мало растворимы в воде. Ванадаты можно получить также сплавлением стехиометрической смеси V2O5 с оксидами или карбонатами щелочных металлов. [c.522]

    П]) спламеннп СггОз с оксидами щелочных металлов, щелочами и карбонатами щелочных, металлов получаются зеленые метахро1 иты М+СгОг  [c.533]

    Обессеривание с применением твердых реагентов. Представляют интерес опыты по обессериванию сернистого нефтяного кокса из белаимской нефти путем добавления к нему окнслов, гидроокисей и карбонатов щелочных и щелочноземельных металлов [94]. Эти опыты основаны на химическом связывании выделяющихся газообразных сернистых соединений из кристаллитов кокса, сопровождаемом получением неорганических сульфидов, хорошо растворимых п воде. Поскольку энергии активации реакций распада серооргаиических соединений и рекомбинации ненасыщенных сеток ароматических колец различны, скорости реакций (16) и (17) можно регулировать изменением температуры и скорости нагрева кокса. С повышением температуры и скорости нагрева органические соединения серы распадаются более интенсивно, в то время как скорость процессов уплотнения, обладающих меньшей энергией активации, в этих условиях изменяется не так значительно. Исходя из изложенных теоретических представлений, можно проводить низкотемпературное обессерива1ше, если в период между реакциями распада и уплотнения вывести продукты распада первичных сернистых соединений из зоны реакции, например, используя для этой цели твердые реагенты. В этом случае [c.207]

    Г. А. Разуваев с сотрудниками [327] изучили кинетику окисления кумола кислородом воздуха в присутствии резината марганца и ряда других веществ и установили, чтч) реакция является автока-талитической. Это подтверждается сокращением индукционного периода при предварительном добавлении гидроперекиси кумола (до 0,2%) к исходному кумолу. Екце большее ускорение индукционного периода наблюдается при добавлении натриевой соли гидроперекиси кумола, что согласуется с многочисленными наблюдениями об ускоряющем действии гидроокисей и карбонатов щелочных и щелочноземельных металлов. Введение малых количеств резината марганца (до 36 мгЦ) тоже приводит к сокращению индукционного периода и росту скорости образования гидроперекиси. Дальнейшее увеличение концентрации резината марганца вызывает постепенное понижение скорости накопления гидроперекиси вследствие способности резината марганца не только ускорять, но п расщеплять гидроперекись кумола. [c.297]

    Алюминий расгворлется в растворах щелочей и карбонатов щелочных металлов с образованием алюминатов  [c.151]

    Удаление ПХД из отработанных трансформаторных и конденсаторных масел возможно путем адсорбционной очистки активированным углем с размером пор 10—150A. Недостатком способа является необходимость высокотемпературной регенерации сорбента (850—950°С) в контакте с кислородом и расплавами карбонатов щелочных или щелочноземельных металлов или их смесей. Адсорбированные ПХД при этом окисляются и разлагаются с образованием газообразных продуктов, состоящих в основном из диоксида углерода и водяного пара. Остаточное содержание ПХД составляет менее 500 млн , что допускается законодательствами некоторых стран. Очищенное масло используют повторно для заполнения оборудования. Преимуществом активированного угля является его способность сорбировать не только ПХД, но и все остальные полигалогендифенилы, представляющие не меньшую экологическую опасность. [c.361]

    Гидролиз галоидалкилов при нагревании с водой не всегда протекает достаточно легко. Лучше применять для этой цели разбавленные растворы щелочи или карбонаты щелочных металлов, окись свинца и известковую или баритовую воду, при действии которых галоидалкилы иногда очень гладко омыляются до спиртов  [c.109]

    По новому методу, опнсапному Причардом, (1 талевую кислоту получают с 75%-ным выходом при взаимодействии бром- или хлорбензола с СО, карбонатом щелочного металла и тетракарбонилом никеля в качестве катализатора при 250—375° под давлением 300—600 ат. Возможно, что пр 1 этом промежуточно образуется ангидрид бсизойно11 кислоты  [c.653]


Смотреть страницы где упоминается термин Карбонаты щелочные: [c.194]    [c.527]    [c.590]    [c.52]    [c.99]    [c.132]    [c.184]    [c.319]    [c.522]    [c.565]    [c.45]    [c.238]    [c.327]    [c.37]    [c.131]    [c.216]    [c.141]    [c.48]   
Рабочая книга по технической химии часть 2 (0) -- [ c.86 , c.87 ]




ПОИСК





Смотрите так же термины и статьи:

Абсорбция С02 растворами карбонатов щелочных металлов

Алюминия с карбонатами щелочных металлов

Аннопольский, Э. К. Беляев, И. П. Книгав ко Изучение кинетики образования метаферритов в смесях карбонатов щелочных металлов с окисью железа

Бария сульфат сплавление с карбонатами щелочных металлов

Бора оксид сплавление с карбонатами щелочных металлов

Вольфраматы сплавление с карбонатами щелочных металлов

Вольфрамовые с карбонатами щелочных металлов

Гидролиз гидроокисями и карбонатами щелочных металлов

Железа с карбонатами щелочных металлов

Железные с карбонатами щелочных металлов

Кальция с карбонатами щелочных металлов

Карбиды с карбонатами щелочных металлов

Карбонат аммония отделение Bi от Hg и щелочных металлов

Карбонаты щелочноземельных металлов щелочных металлов

Карбонаты щелочных и щелочноземельных металлов

Карбонаты щелочных металлов

Карбонаты щелочных металлов взаимодействие с СОг

Карбонаты, сульфаты и нитраты щелочных металлов

Магния оксид сплавление с карбонатами щелочных металлов

Марганцевые с карбонатами щелочных металлов

Молибденовые руды сплавление с карбонатами щелочных металлов

Ниобиевые концентраты сплавление с карбонатами щелочных металлов

Ниобия с карбонатами щелочных металлов

Огнеупорные с карбонатами щелочных металлов

Оксиды с карбонатами щелочных металлов

Определение процентного содержания едких щелочей и карбонатов щелочных металлов, одновременно присутствующих в растворе

Определение содержания в воде карбонатов щелочных металлов

Пирит сплавление с карбонатами щелочных металлов

Равновесия карбонатов щелочей и щелочных зе- rqi со 1 Метасоматоз силикатов при выветривании

Разложение карбонатами щелочных металло

Разложение растворами гидроксидов или карбонатов щелочных металлов, аммиака, гидразина и органических оснований

Растворимость карбоната магния в щелочном

Силикаты с карбонатами щелочных металлов

Смита с карбонатами щелочных металлов

Сплавление и спекание циркона со щелочами и карбонатами щелочных и щелочноземельных металлов

Сплавление карбонатами щелочных металлов

Сплавление с карбонатами щелочных металло

Стекло с карбонатами щелочных металлов

Сульфаты сплавление с карбонатами щелочных металлов

Тантала карбонатами щелочных металлов

Танталовые концентраты сплавление с карбонатами щелочных металлов

Титана с карбонатами щелочных металлов

Флюсы, сплавление с карбонатами щелочных металлов

Циркония с карбонатами щелочных металлов

Шлаки с карбонатами щелочных металлов

Щелочи каустические, определение в присутствии щелочных карбонатов

Щелочные карбонаты, определение в присутствии гидрата окиси алюмини

Щелочные метадлы карбонаты

Щелочные металлы карбонаты их как катализаторы

Щелочных металлов галогениды карбонаты



© 2025 chem21.info Реклама на сайте