Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дальнейшее развитие теории строения атома

    По вопросу дальнейшего развития теории химического строения Бутлеров писал Само собой разумеется, что, когда мы будем знать ближе натуру химической энергии, самый род атомного движения,— когда законы механики получат и здесь приложение,— тогда учение о химическом строении падет, как падали прежние химические теории, но, подобно большинству этих теорий, оно падет не для того, чтобы исчезнуть, а для того, чтобы войти в измененном виде в круг новых и более широких воззрений . Итак, автор теории химического строения предвидел приложение механики атом-ного мира (т. е. квантовой механики) к его теории. Именно применение квантовой механики к проблемам структуры вещества подняло теорию химического строения Бутлерова на новую, высшую ступень. Только в одном не прав был Бутлеров его теория не пала, а превратилась в общехимическую теорию, являющуюся фундаментом современной химии. [c.12]


    Для дальнейшего развития теории химического строения большое значение получило учение о взаимном влиянии атомов в молекулах соединений. Сама идея взаимного влияния атомов уже фигурировала в докладе А. М. Бутлерова (1861). В даль- нейшем (1863) он указал, что многоатомные элементы проявляют в сложных молекулах различные отношения в зависимости от природы элементов, с которь ми они связаны. Так, атом водорода ведет себя различно, соединен ли он с углеродом или с кислородом. [c.146]

    На вопрос о построении заменяющей атом водорода группы атомов теория типов ответа не давала, и более того, сторонники этой теории считали невозможным глубокое познание внутреннего строения молекул. Теория типов оказалась пригодной для описания лишь достаточно простых органических соединений. В случае более сложных соединений, содержащих, например, одновременно атомы кислорода и азота, было трудно решить, по какому типу они построены — по типу воды или по типу аммиака. Одно и то же соединение можно было отнести к нескольким типам. Поэтому теория типов не получила дальнейшего развития. [c.20]

    Основные положения новой теории А. М. Бутлеров сформулировал в статье О химическом строении органических веществ (1861) Исходя от мысли, что каждый химический атом, входящий в состав тела, принимает участие в образовании этого последнего и действует здесь определенным количеством принадлежащей ему химической силы (сродства), я называю химическим строением распределение действия этой силы, вследствие которого химические атомы, посредственно или непосредственно влияя друг на друга, соединяются в химическую частицу И далее Химическая натура сложной частицы определяется натурой элементарных составных частей, количеством их и химическим строением . Так по-новому определяет А. М. Бутлеров природу химического вещества. Это принципиальное положение легло в основу дальнейшего развития органической химии. Из него следует, что введенное А. М. Бутлеровым понятие химического строения вещества включает представление о расположении атомов и распределении связей в молекуле, а также о взаимном влиянии отдельных атомов и атомных групп в молекуле. [c.60]

    Разрабатывая теорию химического строения, Бутлеров не ста-вил перед собой задачу выяснения природы химической связи, справедливо считая, что химия в то время еще не была готова к решению этой задачи. Действительно, необходимой предпосылкой создания теории химической связи было выяснение строения атома. Лишь после того, как стали известны основные черты электронной структуры атомов, появилась возможность для разработки такой теории. В 1916 г. американский физико-химик Дж. Льюис высказал предположение, что химическая связь возникает путем образования электронной пары, одновременно принадлежащей двум атомам эта идея послужила исходным пунктом для разработки современной теории ковалентной связи. В том же 1916 г. немецкий ученый В. Коссель предположил, что при взан.мо-действии двух атомов один из них отдает, а другой принимает электроны при этом первый атом превращается в положительно заряженный, а второй — в отрицательно заряженный ион взаимное электростатическое притяжение образовавшихся ионов и приводит к образованию устойчивого соединения. Дальнейшее развитие идей Косселя привело к созданию современных представлений [c.119]


    В 1906 г. Оствальд опубликовал книгу Путеводные нити в химии , в 1908 г. она была переиздана под названием Становление естествознания . Однако первоначальное название больше соответствовало содержанию книги, в которой Оствальд отразил историю развития важнейших идей и понятий , таких, как элемент, атом и молекула, изомерия и строение. В этой работе Оствальд учитывал только те факты, которые казались ему важными для формирования основных понятий. На самих исторических событиях и роли отдельных ученых он не останавливался. Главное в истории науки, по его мнению, должно составлять понятие. Для Оствальда понятия были олицетворением науки, поскольку каждая научная работа стремится к формулировке соответствующих понятий, с помощью которых можно описать общую закономерность и фактический материал. Для прогнозирования развития науки в будущем историческая наука должна проводить исследование исторических событий в соответствии с законами развития [131, с. 760 134, с. 3 и сл. 132, т. 10, с. 4 и сл. 133]. Законы развития Оствальд усматривал в противоречиях между господствующей идеей, новыми опытными данными и их интерпретацией. Каждая теория объясняла только определенный круг фактов, поэтому в результате новых открытий достигалось, в конце концов, состояние, когда эти факты уже не могли больше укладываться в рамки существующей теории и тем самым способствовали ее дальнейшему развитию. [c.248]

    Дальнейшее развитие этого учения нашло свое выражение в теории химического строения Бутлерова и в периодическом законе Д. И. Менделеева. Необходимо отметить, что, не придавая большого значения понятию валентности, участники конгресса не смогли вскрыть связь между понятием химический эквивалент и понятием атом и молекула . Вследствие этого они признали эквивалент только эмпирическим понятием. [c.345]

    Несмотря на большой успех в объяснении спектров атом( в водорода, теория Бора оказалась не в состоянии объяснить спектры других атомов. Это побудило к созданию более общей квантовой теории, которая могла бы быть применена к различным сложным системам столь же успешно, как теория Бора для водорода. Дальнейшие исследования строения электронных оболочек атомов и характера взаимодействия электронов привели к рождению квантовой механики, которая позволяет успешно изучать системы, состоящие из микрочастиц. В отличие от классической механики, исследующей законы движения тел с большими массами, квантовая механика является механикой частиц малых масс. Хотя математический аппарат квантовой механики довольно сложен, а ее некоторые постулаты абстрактны, это не помешало бурному развитию квантовой теории строения вещества и привело к настолько важным практическим решениям, значение которых трудно переоценить. [c.16]

    В развитии пространственных представлений классическая теория химического строения вплотную подошла к другому положению, имеющему особенно важное значение для органической химии -. Именно, классическая стереохимия установила различие в геометрической конфигурации заместителей вокруг атома углерода в предельных соединениях, где атом углерода осуществляет четыре ординарные связи, в тех непредельных соединениях, где атом углерода осуществляет одну двойную связь и две ординарных, и, наконец, в тех непредельных соединениях, где атом углерода осуществляет две двойные связи или одну тройную связь и одну ординарную связь. Различие в геометрическом расположении заместителей вокруг атома углерода в этих трех случаях (тетраэдрическое, плоское и линейное, подробнее см. ниже) ясно говорило о том, что способы осуществления химических связей атомов углерода в этих трех случаях различны. Отсюда напрашивался вывод о том, что связи одинаковой кратности между данным атомом и атомом углерода в соединениях указанных трех типов должны различаться по своим свойствам. Отсюда вытекала возможность понять причину различий между свойствами связей данной кратности между атомами данных элементов в разных молекулах. Однако эти факты не стали до сих пор отправным пунктом дальнейшего исследования причин различий в свойствах химических связей одинаковой кратности между данными атомами в разных соединениях. [c.53]

    Новая структурная классификация химических наук возникла в тесной связи с процессом формирования отдельных специфических направлений исследований и последующей дифференциации химии на отдельные химические науки, для каждой из которых более строго определялись объекты и специальные методы исследований. Новая классификация химических наук отразила логическое развитие химических знаний в XIX столетии и вполне соответствовала задачам дальнейшей, более специализированной, разработки отдельных направлений исследований. Заметим попутно, что употребляемое и в настоящее время название общая химия сохранено, в основном, для обозначения учебной дисциплины — основного курса химии в планах химического образования. Новая структурная классификация химии, как известно, представляет основу структуры и классификации химических наук, принятую в наше время. В конце 80-х годов прошлого столетия многим казалось, что химия в какой-то степени завершила свое развитие. Действительно, к этому времени сложились, казалось, строго научные определения основных понятий химии — элемент, атом, молекула, эквивалент, простое тело, валентность и др. Научную базу химии составляли фундаментальные законы и основополагающие теории, открытые и установленные в течение XIX столетия и увенчанные теорией химического строения и периодическим законом. Химия располагала к этому времени комплексом закономерностей, открытых в результате изучения различных сторон химического процесса и различных химических явлений. Органическая химия, занявшая к тому времени первенствующее положение в исследованиях, прочно вступила в новый этап своего развития — эпоху направленного органического синтеза. Многие химики полагали поэтому, что основные проблемы химии уже получили свое решение и что постройка научного здания химии в основном уже завершена, за исключением некоторых деталей. [c.12]


    Открытие электронов и появление теории Бора (1913) строения атома способствовали дальнейшему развитию теории химического строения, так как в органическую химию были введены электронные представления. Одну из первых электронных гипотез в органической химии выдвинул в России в 1914—1916 г. А. М. Беркенгейм. В основе его взглядов лежали электростатические представления. Согласно гипотезе А. М. Беркеигейма, углерод выполняет смешанные функции, являясь электроположительным по отношению к таким атомам, как хлор, и электроотрицательным по отношению к таким атомам, как водород. Эти смешанные функции атом углерода выполняет одновременно по отношению к разным атомам, с которыми он связан. Согласно теории А. М. Беркеигейма, химическая связь осуществляется одним электроном. В неорганических соединениях этот электрон может пол--ностью перейти от одного атома к другому, после чего атомы будут удерживаться только электростатическими силами. В органических молекулах валентный электрон полностью не переходит от одного атома к другому, а только смещается по направлению к одному из них, например, от углерода к хлору, от водорода к углероду и т. п..  [c.29]

    Приведенные мною примеры указывают на плодотворность применения метода изучения электронной плотности к проблеме исследования природы химической связи. Представление строения молекул органических соединений, так же как и других объектов, в виде распределения электронной плотности позволяет рассматривать молекулу как единое целое в соответствии с теорией химического строения Бутлерова, который говорил Исходя от мысли, что каждый химический атом, входящий в состав тела, принимает участие в образовании этого последнего и действует здесь определенным количеством принадлежащей ему химической силы (сродства), я называю химическим строением распределение действия этой силы, вследствие которого химические атомы, посредственно или непосредственно влияя друг на друга, соединяются в химическую частицу (А. М. Бутлеров. Избр. работы по органической химии. Изд. АН СССР, 1951, стр. 71—72). Согласно современным представлениям, химические силы обусловлены валентными электронами атомов, и, следовательно, изучение распределения электронной плотности является основной задачей современного развития теории химического строения как органических, так и других соединений. В настоящее время еще очень мало внимания уделяется прямому определению (при помощи эксперимента) распределения электронной плотности. Работа эта в экспериментальном отношении очень сложная и требует значительных усилий от исследователя, но большое значение полученных этим методом результатов требует значительного расширения работ по определению электронной плотностн. Совокупное применение синтеза, изучения химических и физических свойств и определения электронной плотности, несомненно, будет способствовать дальнейшему развитию теории химического строения Бутлерова. [c.196]

    Большое значение для дальнейшего развития теории химического строения получило учение о взаимном влиянии атомов в молекулах соединений. Сама идея взаимного влияния атомов в молекулах фигурировала уже в докладе Бутлерова в 1861 г. В дальнейшем эта идея получила в исследованиях Бутлерова определенное развитие. Бутлеров указал (1863), что атомы в молекулах проявляют различные свойства в зависимости от природы элементов, с которыми они соединены. Так, атом водорода ведет себя совер-гпенно различно (по отношению к реагентам), в зависимости от того, соединен он с углеродом или кислородом [c.314]


Смотреть страницы где упоминается термин Дальнейшее развитие теории строения атома: [c.512]    [c.50]    [c.99]    [c.209]    [c.255]    [c.301]   
Смотреть главы в:

Неорганическая химия -> Дальнейшее развитие теории строения атома




ПОИСК





Смотрите так же термины и статьи:

Атомов строение

Дальнейшее развитие

Теория строения атомов



© 2025 chem21.info Реклама на сайте