Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Биология развития, определение

    Многоклеточные растения и животные состоят из самых разных клеток, имеющих характерную морфологию и выполняющих специализированные функции. Эта специализация возникает на разных стадиях эмбрионального развития. Она поддерживается автономно либо проявляется в ответ на специфические межклеточные контакты или внеклеточные стимулы. Так или иначе, фенотипическое разнообразие клеток обусловливается дифференциальным характером экспрессии генов, приводящим к накоплению и распространению различных генных продуктов. Одна из ключевых проблем биологии развития заключается в следующем каков механизм дифференциальной экспрессии генов в клетках, содержащих по существу одинаковый геном Мы знаем, что установление и поддержание дифференцированного состояния осуществляются, в частности, путем регуляции транскрипции. Так, в клетках одного типа транскрипция определенных генов регулируется совершенно одинаковым специфическим образом на протяжении всей жизни организма, начиная с эмбрионального уровня (разд. В.З.ж). Гены, [c.61]


    Область хилши ендииновых антибиотиков еще очень молода. Ей было всего четыре года, когда (в 1991 г.) уже бььт опубликован первый исчерпывающий обзор на эту тему [40Ь]. В нем, в частности, говорилось Редко случалось раньше, чтобы впервые открытый класс природных соединений создавал бы такие возбуждающие стимулы к развитию химии, биологии и медицины, как это случилось с ендиинами. Возможности, которые они открывают для новых творческих свершений, могут быть перекрыты только потенциальными терапевтическими и биоте.хнологическими приложениями... Определенно можно надеяться, что в скором времени ряд этих целей [c.532]

    Из оплодотворенного яйца может развиться самец или самка, морской еж, лягушка или человек. Результат развития определяется геномом линейная последовательность А-, 0-, С- и Т-нуклеотидов в ДНК организма должна направлять создание множества различающихся химически клеточных типов, которые организованы в пространстве определенным образом. Задача биологии развития состоит в объяснении этого процесса. Прежде всего необходимо ответить на вопрос, каким образом в эмбриогенезе возникают различия между исходно одинаковыми клетками. Для иллюстрации основных законов развития обратимся сначала к земноводным, а затем к млекопитающим. [c.71]

    Казалось бы, что на рубеже 70-х гг. молекулярная биология достигла определенной степени завершенности были установлены структура [1347] и механизмы репликации ДНК, провозглашена центральная догма экспрессии гена (транскрипция, трансляция), выяснены основные аспекты регуляции активности гена. В этот период главным объектом молекулярно-генетических исследований были микроорганизмы. Переход к эукариотам (включая человека) встретился с дополнительными проблемами и трудностями, и кроме того, существовавшие в то время методы не позволяли рассчитывать на получение принципиально новых результатов. Стремительный прорыв в развитии молекулярной генетики в начале 70-х гг. стал возможен благодаря появлению нового экспериментального инструмента-рестрикционных эндонуклеаз. Был открыт путь для широкомасштабного получения генных продуктов (физиологически значимых белков) и для генетического манипулирования с различными организмами. Наши знания о структуре и функции генетического материала у эукариот, включая человека, заметно пополнились. Новые, совершенно неожиданные факты, имеющие как теоретическое, так и практическое значение, были открыты в разных областях, таких, как действие гена, популяционная генетика, эволюция и генетическая консультация, включая пренатальную диагностику (разд. 4.3 и 9.1). Достигнутые успехи заставили ученых задуматься об этической стороне манипулирования с человеческим зародышем, об опасности возникновения возбудителей в процессе генно-ин-женерных исследований. Многие из этих вопросов были подняты самими учеными, активно работающими в данной области. В настоящее время большинство исследователей считает, что опасения, касающиеся [c.122]


    Представленные в сборнике статьи характерны для нынешнего периода развития газовой хроматографии. Прошедшая очередная конференция по газовой хроматографии в Баку подвела итоги работы большого коллектива советских хроматографистов и наметила новые рубежи в развитии теории, техники и практики газовой хроматографии, включал такие новые области, как молекулярная биология и определение вредных примесей в окружающей среде. [c.3]

    В 1975 году данные проблемы обсуждались на Международной конференции, посвященной вопросам получения рекомбинантных молекул ДНК. В ней приняли участие ученые разных областей биологии (медицинской микробиологии, бактериальной генетики, вирусологии, эпидемиологии, биохимии, биофизики, ботаники, биологии развития и т.д.), а также юристы, представители прессы, государственных и частных промышленных компании. Участники конференции пришли к выводу, что эксперименты с использованием методов генетической инженерии должны продолжаться, но при обязательном соблюдении определенных правил и рекомендаций. Эти правила были установлены в последующие годы в Англии, СССР, США, Франции и других странах. Неоднократно они пересматривались в сторону смягчения, так [c.473]

    Наряду с методами двумерной спектроскопии ЯМР существуют еще два распространенных биохимических метода селективное дейтерирование аминокислот определенного типа и сравнение с широким классом гомологов протеинов, в котором замещается лишь небольшое число аминокислот в последовательности. Несмотря на то что оба эти метода были известны задолго до того, как двумерная спектроскопия стала бурно развиваться и нашла широкое применение, только сейчас эти методы стали применяться действительно эффективно благодаря развитию современных методов молекулярной биологии. Селективное дейтерирование в основном проводится исходя из того, что наибольшее сродство к клеткам в питательной среде обнаруживают аминокислоты именно в дейтерированном состоянии, так как это непосредственно обеспечивает встраивание соответствующих аминокислот в молекулу протеина. Однако так как при этом изотопозамещенные аминокислоты не только непосредственно встраиваются в молекулу протеина, но и участвуют в превращениях, а также могут быть использованы при образовании других аминокислот, селективность дейтерирования существенно пони- [c.130]

    Каждая из естественных наук (физика, химия, биология, геология и др.) имеет своим предметом определенную область природы, специфическую для нее фор.му движения. материи как ступень поступательного развития, усложнения, изучает ее со стороны отдельных свойственных ей связей и закономерностей. Ф. Энгельс, определяя предмет естествознания, писал, что ...изучение этих различных форм движения является главным предметом естествознания . Один формы движения материи превращаются в другие. Эти переходы подтверждают единство и взаимосвязь различных ( )1)рм движения, качественную и структурную неисчерпаемость материи, доказываю-г материальное единство мира. [c.5]

    Биоэтика, по определению Страсбургского симпозиума (1990 г.), - наука, изучающая моральные, юридические и социальные проблемы, возникающие по мере развития медицины и биологии. [c.62]

    По прошествии более трех десятилетий со времени расшифровки структур миоглобина и гемоглобина рентгеноструктурный анализ все еще остается единственным прямым методом определения на атомном уровне пространственного строения белковых молекул, их комплексов и доменов. Полученные с его помощью данные по-прежнему служат незаменимой экспериментальной основой изучения структурно-функциональной организации молекул белков. В 1990-е годы этот метод, по-прежнему сохраняя высокий темп экстенсивного развития, позволил приступить к решению принципиально новых задач, представляющих первостепенный интерес для молекулярной биологии. Основная, если не единственная, причина наметившегося качественного роста возможностей кристаллографии белков связана с использованием вместо излучения рентгеновских трубок синхротронной радиации. [c.74]

    Биофизика — старая наука. Уже давно ставились и решались физические проблемы, связанные с жизнедеятельностью организмов, такие, например, как определение скорости распространения нервного возбуждения (Гельмгольц) или нахождение спектральных основ цветного зрения (Максвелл). Физические методы применялись в биологии издавна — достаточно упомянуть о микроскопе. Однако лишь во второй половине XX века физика объединилась с биологией в изучении основных явлений жизни и началось формирование теоретической и экспериментальной биофизики как обширной и разнообразной области физики, а не подсобного раздела физиологии. Развитие биофизики непосредственно связано с решающими достижениями биологии, прежде всего молекулярной, с возникновением кибернетики, с успехами физики конденсированных систем (в частности, физики полимеров). [c.8]

    ГОДЫ быстрое развитие иммунологии, клеточной биологии и нейробиологии стало возможным именно потому, что клеточные мембраны рассматривались не только как интересные структурные образования, но и как высокоактивные кооперативные системы. Будучи извлеченной из мембраны, отдельная молекула по определению теряет важную часть своих функций, и даже ее структура сохраняется только при ограниченных условиях. Биохимик, который выделяет ионный канал или пору нервной мембраны, похож на гурмана, пытающегося добыть дырку от бублика. [c.36]


    Клеточные культуры имеют общее свойство с бактериальными культурами, а именно они представляют собой клетки одного типа. Бактериальная культура в микробиологии (штамм) соответствует клеточной линии (клону) клеточной биологии. Сегодня клеточная биология играет все возрастающую роль как определенная, удобная для работы, воспроизводимая модельная система для исследования специфических функций клеток эукариот. Такие системы имеют много достоинств, мы же упомянем только два, которые и обусловили преимущественное использование клеточной культуры, а не целого организма животного или его органа. Во-первых, как и культуры бактерий, некоторые из них способны пролиферировать таким образом, что особые и редкие типы клеток делаются вполне доступными для биохимического изучения. Во-вторых, их можно быстро получить, т. е. интересующая стадия метаболизма или развития клетки данного типа может быть выявлена и изучена более эффективно в клеточной культуре, чем при выделении клетки из целого организма или отдельного органа. [c.368]

    При оптимизации производственной структуры орошаемого земледелия (разделы 6.1 и 6.2) практически не используется информация по биологии роста и развития сельскохозяйственных растений в период вегетации, а также данные об изменчивости водоподачи в тот же период. Ожидаемая урожайность yfi культуры г на единицу площади Xfi участка (хозяйства) номера / оценивается для определенных количеств производственных ресурсов и на основании предыдущего опыта. Валовой доход /-ГО хозяйства If представляет собой произведение урожая культуры г на ее рыночную цену т. е. [c.242]

    Нельзя не видеть все возрастающего значения малых концентраций различных веществ для промышленности, сельского хозяйства, биологии, для развития науки. Поэтому количественное определение очень малых концентраций веществ становится важной проблемой современной аналитической химии. В предлагаемой книге делается попытка рассмотрения ряда вопросов зтого метода анализа. [c.5]

    В предыдущих главах основное внимание было уделено хромато-графическим методам анализа сложных смесей, в которых концентрации отдельных компонентов сравнимы. В этой главе будет рассмотрено хроматографическое определение весьма малых примесей. Решение этой задачи приобретает очень серьезное значение в связи с широким развитием производства полимерных материалов, для синтеза которых необходимы мономеры высокой чистоты. Даже ничтожные количества некоторых веществ, присутствующих в мономерах, в значительной степени нарушают режим полимеризации и других химических реакций, а также приводят к отравлению катализаторов. Надежные и высокочувствительные методы анализа примесей необходимы также в биологии, медицине, при производстве химических реактивов. Все большее значение приобретает разработка методов определения чистоты воздуха, воды, состава различных пищевых продуктов [1, 2]. [c.253]

    Содержаиие понятий биохимия и гбиоорганиче-ская химия в известной степени условно. Здесь говорится о них лишь с единственной целью — проследить пути развития исследований, направленных на выяснение как субстанционального состава растительных и животных тканей, так и химических процессов, происходящих в организме. Такие исследования осуществлялись и чистыми химиками-органиками, и биохимиками, и даже медиками. У каждой из этих трех групп специалистов были свои цели. Хи-миков-органиков увлекали перспективы синтеза все более сложных веществ путем конструирования их молекул с целью показа возможностей искусственного получения аналогов органических соединений, образующихся в живых организмах. Биологи преследовали цели изучения субстратной и функциональной основ живого. Медики стремились выяснить границы между нормой и патологией в организмах. Объединяющим же началом всех этих исследований является не столько объект — живой организм, сколько аналитический путь исследования — от живого организма к изучению веществ, а затем и процессов, его составляющих. Здесь важно подчеркнуть и еще одно обстоятельство, связанное с темой настоящей книги, а именно появление на определенной ступени развития биохимии идеи о ведущей роли ферментов, а затем еще шире биорегуляторов, н процессе жизнедеятельности. В конечном итоге эта руководящая [c.174]

    Описываются мембраны биохимического происхождения, а также мембраны других типов, разработанные биологами и биохимиками для разрешения специальных проблем в этой области. Хотя этот раздел является по существу историческим, тем не менее он необходим не только при рассмотрении происхождения мембран, но и для определения перспектив дальнейшего их развития. [c.126]

    Обзор по любому аспекту газожидкостной хроматографии (ГЖХ) значительно обогащается, если ему предшествует относительно короткая история предмета. В 1950 г. подобный обзор был бы совсем коротким. Он содержал бы единственную ссылку на утверждение Мартина и Синга, относящееся к 1941 г. Подвижная фаза не обязательно должна быть жидкостью, она может быть и паром... Можно, следовательно, осуществлять очень тонкие разделения летучих веществ в колонке, в которой сквозь слой геля, пропитанного нелетучим растворителем, течет постоянный поток газа... [1]. В 50-х годах произошло значительное развитие теории, методов и применений ГЖХ. Однако в статье, написанной в 1960 г., кроме того факта, что методы ГЖХ нашли широкое признание в анализе жирных кислот (и в гораздо меньшей степени при определении метилированных сахаров), содержалось бы относительно мало информации, которая могла бы возбудить повышенный интерес любого химика, кроме восприимчивых ко всему новому и полных воображения биохимика и химика-фармацевта . Оказалось, что больше всего усилий в развитии метода было приложено в области анализа углеводородов. Именно в 1960 г. была впервые продемонстрирована возможность успешного применения ГЖХ для анализа биологически активных соединений с большим молекулярным весом. Оказалось, что методы, созданные для анализа стероидов [3], применимы и для анализа алкалоидов [4]. Вследствие этого в течение последующих нескольких лет колонки с сорбентами, с небольшим содержанием высокотемпературной неподвижной фазы на дезактивированных носителях, а также с ионизационными детекторами высокой чувствительности применили для разделения большого числа разнообразных природных и синтетических веществ, представляющих интерес с точки зрения биологии. Среди исследованных веществ были аминокислоты, ароматические кислоты, витамины, растворимые в жирах и маслах, сахара, биогенные амины, различные лекарственные препараты и другие [5]. В последнее время благодаря применению реагентов, которые позволяют полу- [c.282]

    Развитие новых отраслей промышленности и техники потребовало создания особо чувствительных методов химического анализа различных веществ для определения примесей при их содержании порядка 10" —10 % и меньше. Особо чувствительные методы необходимы также для исследовательских работ в биологии, радиохимии и т. д. [c.7]

    Биохимию можно рассматривать как мост, соединивший традиционные физику и биологию. Дать определение биохимии очень нелегко, поскольку ее развитие происходит на стыке почти со всеми другими естественными науками. По существу же главными предметами изучения биохимии ЯВЛЯЮ1СЯ состав и поведение живых систем, питательные вещества, потребляемые живыми организмами, продукты выделения этих организмов и механизмы протекания химических процессов в живых организмах. [c.477]

    НЫХ методов анализа (например, применение фотоэлектрических фотометров, рН-метров). В ходе управления процессами обогащения угля и переработки нефти использовали в основном данные анализа, характеризующие анализируемую пробу в целом, например температуру затвердевания или температуру вспышки, предел воспламеняемости или данные об отношении анализируемой пробы к действию раствора перманганата калия. Определение ряда таких характеристик, например определение плотности и давления паров, определение вязкости или снятие кривых разгонки, можно осуществлять при помощи приборов. Указанные методы анализа важны для контроля качества веществ, но они не соответствуют современному уровню исследований и контроля производства, а также не способствуют прогрессу в этих областях. Развитие аналитической химии происходит в направлении внедрения физико-химических методов анализа или методов, использующих специфичные свойства веществ, при этом на первый план выдвигаются методы газовой хроматографии. В связи с этим на примере развития газовой хроматографии можно проследить тенденции развития аналитической химии в целом. Метод газовой хроматографии известен с 1952 г., в 1954 г. появились первые производственные образцы газовых хроматографов, а уже в 1967 г. четвертая часть всех анализов, проводимых на нефтеперерабатывающих заводах США, осуществлялась методом газовой хроматографии (А.1.13]. К 1968 г, было выпущено свыше 100 ООО газовых хроматографов [А.1.14], и лишь небольшую часть из них применяли для промышленного контроля. Газовые хроматографы были снабжены детекторами разных типов в зависимости от специфических свойств анализируемого вещества, его количества и молекулярного веса, позволяющими провести определение вещества при его содержании от 10 до 100% (в случае определения летучих неразлагающихся веществ в газах — при содержании 10- %). К подбору наполнителя для колонок при разделении различных веществ подходили эмпирически. В 1969 г. появились газовые хроматографы, которые наряду с различными механическими приспособлениями содержали элементы автоматики. Для расчета результатов анализа по данным хроматографии и в лаборатории и в ходе контроля и управления процессом применяли цифровые вычислительные машины в разомкнутом контуре. В настоящее время эти машины вытесняются цифровыми вычислительными машинами в замкнутом контуре. При этом большие вычислительные машины со сложным оборудованием можно заменить небольшими. В будущем результаты анализа можно будет получать гораздо быстрее. Методы газовой хроматографии в дальнейшем вытеснят и другие методы анализа мокрым путем и внесут значительный вклад в автоматизацию процессов аналитического контроля. Внедрение техники и автоматизации в методы аналитической химии будет способствовать увеличению числа специалистов с высшим и средним специальным образованием, работающих в области аналитической химии. В настоящее время деятельность химиков-аналитиков выглядит совершенно иначе. Химик-аналитик должен обладать специальными знаниями в области химии, физики, математики и техники, а также желательно и в области биологии и медицины. Все это необходимо учесть при подготовке и повышении квалификации химиков-аналитиков, лаборантов и обслуживающего пс[)сонала. [c.438]

    В целях более правильного определения сроков планирования мер борьбы с вредителями в наиболее уязвимую для них фазу при разработке технологических карт необходимо иметь фенограммы основных вредителей и фенологию развития сельскохозяйственных культур. Планирование сроков проведения работ по фено-грамме упрощает работу и позволяет с достаточной точностью намечать календарные сроки проведения мер по борьбе с вредителями с учетом биологии развития вредителей и климатических факторов, обусловливающих их развитие в данной зоне или области. [c.126]

    Процесс образования из одной гигантской клетки четырех разных дочерних клеток называется клеточной дифферепцировкой. Этот термин широко используется в биологии развития, но общепринятого его определения не существует. Некоторые исследователи этим термином описывают только процессы специализации клеток у высших животных и растений. Даже в этих случаях обычно говорят о растущих и дифференцирующихся клетках. Я предпочитаю использовать термин дифференцировка для всех клеток (растений, животных и микроорганизмов) и отношу его ко всем тем программам развития, в результате осуществления которых клетка становится отличной от своего исходного состояния, или от родительской клетки, или от сестринских. [c.15]

    Итак, можно сказать, что настоящая книга Р. Левонтина подводит итог определенного периода в развитии популяционной генетики, вскрывает причины, ведущие к неоднозначной трактовке разными исследователями одних и тех же фактов, а также намечает перспективы дальнейших исследований в главном направлении — познании эволюционного процесса и овладении им. Я уверен, что книга в русском переводе окажется полезной широкому кругу биологов, связанных с изучением эволюционного процесса, — генетикам, экологам, морфологам, биологам развития и молекулярным биологам, а также биоматематикам, [c.10]

    Биологическая эволюция определяется преимущественным выживанием популяций, более приспособленных к условиям среды. Соответственно строение организма характеризуется такой приспособленностью и адаптацией к определенной экологической нише. Поэтому в биологии естественным образом возникает фи-иалистическая трактовка изучаемых явлений. Развитие зиготы во взрослый организм можно описывать, пользуясь понятием щели целью развития является создание приспособленного организма. Уже на ранних стадиях эмбриогенеза определенные группы клеток предназначены для развития в определенный орган, и этим задается их функциональность на всех уровнях, вплоть до молекулярного. [c.15]

    Если считать, что вершиной эволюционного развития усложняющихся структур являются биологические системы, то надо признать существование фактора отбора, сохраняющего именно те системы, которые обладают способностью защищаться от внешних воздействий. Они вступают в контакты с внешней средой тол1>ко так, что приток энергии и массы регулируется строго определенными условиями, которые можно обозначить термином код. В этом отношении динамические системы биологии (т. е. живые клетки и организмы) обнаруживают удивительное сходство-с простейшими физическими системами, на которые наложены ограничения . Следовательно, принцип защиты сохраняет свое значение по крайней мере для некоторого и важного класса систем, представляющих собой исходную точку предбиологического-развития. [c.51]

    Примеров пространственного (геометрического) кодирования в химии и биологии мож[го привести очень много. Отношения катализатора, в частности фермента (его активной группы) и субстрата, гормона и рецептора, антигена н антитела, эффекты феромонов, явления узнавания молекул и т. п. достаточно убедительно свидетельствуют о решающем значении определенных дискретных совокупностей геометрических конфигураций для развития того или иного процесса. Заметим, что геометрия в наиболее развитых структурах не абсолютно жесткая (рнс. П1.6). Молекулы антител, как доказано в настоящее время, способны изменять форму, причем их фрагменты вращаются нли раздвигаются как концы щипцов, приспосабливаясь к менее подвижной структуре антигена (об аналогичных явлениях в белках см. 1гиже), [c.334]

    Анализ следовых количеств органических веществ играет важную роль в биологии и экологии. Около 5% всех публикующихся по аналитической химии работ посвящено определению следовых количеств органических соединений в пищевых продуктах, образцах продукции сельского хозяйства, в воздухе и источниках воды. Анализ следовых количеств органических соединений, тем или иным образом неиосредственно влияющих на человека, оказывает очевидное воздействие на развитие ряда дисциплин, вызывающих в настоящее время повышенный интерес со стороны широкой общественности, в частности на проблемы защиты окружающей среды и чистоты пищевых продуктов,, на биохимию, клиническую химию и медицину. В этой связи уместно привести выдержку из работы Херца и др. [3] Да недавнего времени в анализе следовых количеств основное внимание уделялось определению неорганических соединений. Теперь, однако, мы начинаем понимать, что многие из наших наиболее насущных проблем требуют знаний и умения в области анализа следовых количеств органических веществ. Такой анализ необходим для защиты нашего здоровья и окружающей среды и для обеспечения необходимой питательной ценностк пищевых продуктов. Признанием необходимости широкого внедрения методов определения следовых количеств органических соединений явились некоторые из недавно принятых федеральных законодательных актов США, в частности Федеральный закон о контроле степени загрязнения воды (1972 г.), Федеральный закон о контроле содержания пестицидов в объекта.х окружающей среды (1972 г.), Закон об обеспечении безопасности питьевой воды (1974 т.), Закон о контроле над токсичными веществами (1976 г.) и ряд других. Введение этих законодательных актов в конечном итоге базируется на умении химиков-аналитиков точно идентифицировать и количественно-определять органические соединения на уровне следовых количеств в самых различных матрицах . [c.17]

    А (Б. Меррифилд, 1969). Дальнейшее развитие получили аналит. методы стал широко использоваться автоматич. аминокислотный анализатор, созданный С. Муром и У. Стайном в 1958, существенно модифицированы хроматографич. методы, до высокой степени совершенства доведен рентгеноструктурный анализ, сконструирован автоматич. прибор для определения последовательности аминокислотных остатков в Б.-секвенатор (П. Эдман, Г. Бэгг, 1967) Благодаря созданию прочной методнч. базы стало возможным проводить широкие исследования аминокислотной последовательности Б. В эти годы была определена структура неск. сотен сравнительно небольших Б. (до 300 аминокислотных остатков в одной цепиХ полученных из самых разл. источников как животного, так и растит., бактериального, вирусного и др. происхождения. Среди них — протеолитич. ферменты (трипсин, химотрипсин, субтилн-зин, карбоксипептидазы), миоглобины, гемоглобины, цитохромы, лизоцимы, иммуноглобулины, гистоны, нейротоксины, Б. оболочек вирусов, белково-пептидные гормоны и др. В результате были созданы предпосылки для решения актуальных проблем энзимологии, иммунологии, эндокринологии и др. областей физ.-хим. биологии. [c.248]

    На основе классич. Б. в этот период возникли самостоят. науки-молекулярная биология и бноорганическая хи.чия. Научное направление, объединяющее эти науки с биофизикой, получило название физ.-хим. биологии. Совр. период в развитии Б. характеризуется новыми достижениями в изучении живой материи. В области энзимологии исследованы сотни ферментных систем, во мн. случаях установлен механизм их каталитич. действия. Новые концепции возникли в области Б, гормонов, в частности в связи с ролью аденилатциклазной системы в области биоэнергетики, где было открыто участие в генерации энергии клеточных мембран, а познании механизмов передачи нервного возбуждения и биохим. основ высшей нервной деятельности и др. В настоящее время установлен в общих чертах механизм передачи генетич. информации, реализующийся при репликации, транскрипции и трансляции, разработаны методы получения и определения структуры отдельных генов, по существу завершено составление метаболич. карты , т.е. путей превращения в-в в клетке, свидетельствующей о биохим. общности живых организмов и непрерывности обмена в-в в биосфере. [c.292]

    Хроматография — наиболее часто используемый аналитический метод. Новейшими оматографическими методами можно опрвд шпъ газообразные, жидкие и твердые вещества с молекулярной массой от единиц до 10 . Это могут быть изотопы водорода, ионы металлов, сингетические полимеры, белки и др. С помощью хроматографии получена обширная информация о строении и свойствах органических соединений многих классов. Применение хроматографических методов для разделения белков оказало огромное влияние на развитие современной биохимии. Хроматографию с успехом применяют в исследовательских и клинических целях в самых разных областях биологии и медицины, в фармацевтике и криминалистике дпя терапевтического мониторинга в связи с ростом нелегального употребления наркотиков, идентификации антибиотиков и отнесения их к той или иной группе антибактериальных препаратов, дпя определения наиболее важных классов пестицидов и дпя мониторинга окружающей среды. Такие достоинства как универсальность, экспрессность и чувствительность делают хроматографию важнейшим аналитическим методом. Более десяти работ (1957—1980), выполненных с применением хроматографических методов, были удостоены Нобелевских премий среди авторов методических работ, удостоенных премий, А. Тизелиус (1948), А. Мартин и Р. Синдж (1956). [c.265]

    В Советском Союзе молекулярная биология имела свою предысторию с серьезными научными заделами и традициями. Первые конкретные идеи о матричном механизме воспроизведения макромолекулярных хромосомных структур как носителей наследственности были высказаны еще в 1928 г. Н. К. Кольцовым. В 1934 г. в Московском государственном университете им. М. В. Ломоносова на кафедре биохимии растений под руководством А. Р. Кизеля были начаты исследования нуклеиновых кислот. Эти работы затем возглавил его ученик А. Н Белозерский, трудами которого была доказана универсальность распространения ДНК в живом мире и связь количественного содержания нуклеиновых кислот в клетках с интенсивностью роста и размножения. К моменту официального рождения молекулярной биологии в 1953 г., когда Дж. Уотсоном и Ф. Криком был сформулирован принцип структуры и воспроизведения ДНК, у нас в стране существовала собственная школа специалистов по нуклеиновым кислотам, готовая воспринять тенденции развития этой новой науки. Поэтому уже в ранний период становления молекулярной биологии, несмотря на определенные трудности и недостаток кадров, советскими учеными был сделан ряд принципиальных научных вкладов, среди которых обнаружение специальной фракции РНК. в последующем названной информационной РНК (мРНК), открытие временной регуляции синтеза информационных РНК на ДНК, тонерские исследования информационных РНК эукариотических клеток, расшифровка полной первичной структуры одной из тРНК, демонстрация возможности самосборки рибосом и т. д. [c.4]

    Процесс изменения значений слов происходит непрерывно, неизбежно и незаметно. Когда в начале 19 века Берцелиус впервые использовал прилагательное органическая для определения специфической области химии, оно совершенно очевидно подчеркивало изучение соединений, сущ,ествуюп1,их в природе как составная часть живой материи. К концу века термин органический , используемый в химическом контексте, давно перестал обозначать Еещ,ества, которые образуются только в живых системах, и когда возник вопрос об определении понятия органическая химия Роско (1871 г.) определил ее как химия углеродных соединений , а Шорлеммер (1894 г.)—как химия углеводородов и нх производных — определения, применимые сегодня, как и тогда, когда они были впервые сформулированы. Это изменение отразило огромные достижения, происшедшие в течение 19 века в нашем понимании химии такого элемента как углерод. Кроме того, это было признанием явно неограниченной широты предмета. С тех пор измененне содержания, вкладываемого в выражение природный продукт , иллюстрировало изменение взглядов химиков на роль изучения таких вещ,еств в развитии органической химии. Эти исследования продолжались несмотря ни на что, с неослабевающей энергией как в прошлом веке, так и в первой половине этого. Для большинства, если не для всех, они являются основной частью всего предмета и подчеркивают внутреннюю взаимосвязь органической химии и биологии. [c.13]

    В биологии естественно возникает финалистическая трактовка изучаемых явлений. Развитие зйготы во взрослый организм можно описывать, пользуясь понятием цели целью развития является создание организма. Его структура целесообразна, она соответствует условиям существования. Уже на ранней стадии эмбриогенеза определенные группы клеток предназначены для развития в определенный орган, и этим задается их функциональность на всех уровнях вплоть до молекулярного. Также описывается и филогенез — эволюционное развитие. Оно направлено в сторону наибольшей приспособленности популяции— элементарной эволюционирующей системы — к внешним условиям. [c.18]

    В этом смысле организм подобен машине, построенной по плану для достижения определенной цели. Конечно, научная биология далека от телеологического рассмотрения процессов развития. Достижение цели в онтогенезе и филогенезе является следствием реальных причин (естественного отбора и т. д.). Подчеркивая наличие некоторого плана развития, Моно вводит понятие телеономии [14], имея в виду причинную обусловленность (каузальность) развития. Исключительная сложность и историчность филогенетического и онтогенетического развития организма — живой машины — определяют его финалистическое описание, не свойственное обычной физике и химии. Очевидна бессодержательность такого, например, утверждения Ионы натрия и хлора взаимодействуют друг с другом с тем, чтобы построить кубический кристалл . Напротив, утверждение ...по той причине, что ионы Na и I имеют такие-то заряды и радиусы, кристалл Na I должен быть кубическим имеет ясный смысл. [c.18]

    Одной из основных причин применения дериватизации в ГХ является перевод нелетучих соединений в более летучие. Особое место здесь занимают методы получения летучих производных аминокислот, которые в натуральном виде не только нелетучи, но и термически нестойки и поэтому их прямой анализ методом ГХ невозможен. В то же время актуальность задач качественного и количественного определения аминоки слот в биологии, биохимии, медицине и микробиологии стимулирует развитие методов получения и анализа летучих производных аминокислот. Использование метиловых эфиров N-тpифтopaцeтил-пpoизвoдныx [c.193]

    Комплексные соединения приобрели огромное значение в химии. На первом этапе развития химии комплексных соединений основное внимание было сосредоточено на синтезе и выделении их из раствора в твердом виде. Начиная с 40-х годов положение существенно изменилось. В связи с тем, что образование комплексных соединений в растворе часто оказывает решающее влияние на свойства последнего, чрезвычайно важно знать состав комплексных соединений, их физико-химические характеристики в растворе, особенно прочность, количественно определяемую константой устойчивости. Для этой цели широко применяются различные физико-химические методы. В настоящее время методы исследования комплексных соединений в растворах довольно хорошо разработаны. Однако ознакомление широких кругов физико-химиков, химиков-аналитиков, биологов и технологов с этими методами задерживалось из-за отсутствия обобщающего руководства по.,методам определения констант устойчивости. Существующие на русском языке монографии А. К. Бабко Физико-хймйческий анализ комплексных соединений в растворах и К- Б. Яцимирского -и В. П. Васильева Константы нестойкости комплексных соединений не могут удовлетворить полностёю, посдо ь су в них изложены лишь отдельные вопросы методов ойр целе состава и констант устойчивости. В 1961 г. одновременно появились две монографии, в которых подробно и полно изложены методы определения состава и констант устойчивости — книга Г. Л. Шлефера Комплексо-образование в растворах на немецком языке и книга супругов Россотти Определение констант устойчивости в растворах на английском языке. Авторы второй книги — известные специалисты в этой области они принимали активное участие в разработке расчетных и экспериментальных методов определения [c.5]

    С момента открытия хроматографии русским ученым М. С. Цветом прошло около 70 лет. За это время благодаря гибкости и универсальности хроматография получила исключительно широкое развитие. Трудно сейчас назвать отрасль науки и техники, где бы не использовались хроматографические методы. От исследования лунных пород до анализа сточных вод, от определения микроколичеств пестицидов в пищевых продуктах до промышленного производства чистых соединений — таков диапазон применения современной хроматографии. Наиболее перспективно использование хроматографии в химии и нефтехимии, в биологии и медицине, в пиитевой промышленностр и виноделии. [c.3]

    Определение характеристик атомных и молекулярных частиц (их строения, состава и т.д.) в аналитической химии называют качественньш анализом. Измерение относительного содержания каждой из атомных или молекулярных частиц в образце называют количественным анализом. Оба эти направления вносят свой вклад в быстрое развитие наутси и одновременно активно используют современные научные достижения. Новые методы анализа базируются на основополагающих открытиях в физике, химии и биологии. В свою очередь новые методы аналитической химии становятся основным двигателем прогресса в химии, медицине, в других науках, а также в самых разнобразных областях применения, таких как контроль за окружающей средой, управление промышленными процессами, здравоохранение, геология, сельское хозяйство, оборона и совершенствование законодательства. Производство аналитических приборов в США выросло в 10 раз, достигнув объема в 3 млрд. долл. В международной торговле аналитической аппаратурой США имеют положительный баланс примерно в 1 млрд. долл. [c.193]

    С развитием естествознания химия все глубже и глубже проникает в биологию и медицину она вскрывает супцюсть многих процессов, в том числе и таких, которые ранее считались чисто биологическими. Ярким примером этого является раскрытие загадки наследственности как теперь известно, наследственные признаки организмов записаны в молекулах дезоксирибонуклеиновых кислот (ДНК) определенной последовательностью нуклеотидов — структурных компонентов ДНК. [c.9]

    Химический характер процессов в организме обусловливает их подчинение основным химическим закономерностям. Способкость живого к саморегулированию и самовосстановлению существенно отличает его от неживого и вызывает необходимость поисков законов, специфичных для живых систем, и исследования влиянгьч на организм чисто химических факторов. Изучение молекулярной биологии невозможно без глубокого знания химических и физических процессов в живых системах, так как они оказывают решающее влияние на характер развития организма. Исследование организма в целом должно протекать в неразрывной связи химии, физики и медицины. Все эти научные дисциплины относятся к естествознанию, предметом изучения которого, по точному определению Ф. Энгельса, является движущая материя — тела, неотделимые от движения. [c.5]


Смотреть страницы где упоминается термин Биология развития, определение: [c.115]    [c.52]    [c.4]    [c.5]    [c.5]    [c.257]   
Биология развития (1979) -- [ c.7 ]




ПОИСК







© 2025 chem21.info Реклама на сайте