Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оствальд и его работы

    Идеи Д. И. Менделеева и Д. П. Коновалова в дальнейшем развил и углубил Н. Д. Зелинский с учениками. Располагая огромным собственным экспериментальным материалом, опытом и правильным подходом к явлениям катализа, он дал ряд ценных обобщений и выводов. Свои воззрения на катализ Н. Д. Зелинский изложил в ряде работ [32], положив в основу бутлеровскую теорию строения органических соединений и принципы катализа Д. И. Менделеева. Н. Д. Зелинский указывал на доминировавший в то время в науке неверный подход к объяснению каталитических процессов и отметил, что определение катализа по И. Берцелиусу и В. Оствальду неправильны и не могут разрешить вопроса о механизме каталити- [c.124]


    Теоретические представления о причинах, обусловливающих устойчивость лиофобных золей, получили дальнейшее развитие в работах Б. В. Дерягина и Л. Д. Ландау. Согласно теоретическим воззрениям и экспериментальным данным Дерягина, пленка жидкости, заключенная между двумя погруженными в нее твердыми телами, оказывает на них расклинивающее давление и тем самым препятствует их сближению. Действие быстро возрастает с утончением пленки и в большой степени понижается от присутствия электролитов. С этой точки зрения коагуляции частичек препятствует расклинивающее действие разделяющих их пленок. Введение электролитов в золь приводит к изменению двойного электрического слоя, сжатию его диффузной части и изменению прочности разделяющих частицы пленок и, тем самым, к нарушению стабильности золя. Стройно развитая математическая теория стабильности и коагуляции Дерягина и Ландау приводит к строгому физическому обоснованию правила валентности Шульце — Гарди и вместе с тем подводит физическую основу под эмпирические закономерности, обнаруженные Оствальдом. [c.341]

    Особое место в изучении химической кинетики занимает вопрос о влиянии на протекание процесса примесей, участие которых в последнем не учитывается стехиометрическим уравнением реакции. Такие примеси в 1835—1836 гг. были названы шведом И. Я. Берцелиусом (1779—1848) катализаторами он же ввел в науку термин катализ. Под последним подразумевалось ускоряющее действие на химические процессы присутствия в реагирующей системе тел, не принимающих видимого участия в реакциях Сущность каталитической силы состоит в том, что тело лишь одним своим присутствием. .. может возбуждать дремлющие химические сродства взаимодействующих веществ . Однако Берцелиусу не удалось отстоять представления о катализе и понятие о нем прочно вошло в химию лишь благодаря работам Оствальда, проведенным в 1894—1911 гг. Оствальд дал катализу подробное научное объяснение, основанное на законах термодинамики это объяснение не утратило своего значения и поныне. [c.169]

    В развитии современных представлений о свойствах растворов электролитов и явлении электропроводности большую роль сыграли работы Д. Даниэля, И. Гитторфа, А. Фика, Ф. Кольрауша, С. Аррениуса, В. Оствальда, Я. Вант-Гоффа, В. Нернста, С, Серенсена, П. Вальдена, Я. Бренстеда, П. Дебая, Э. Гюккеля и Л. Онзагера. С. Аррениус (1887) сформулировал теорию электролитической диссоциации, которая предоставила возможность легко объяснить явления, связанные с ионными равновесиями в растворах электролитов. Теория Дебая и Гюккеля (1923—1925) позволила количественно описать свойства разбавленных растворов и явилась своеобразным триумфом статистической физики. [c.9]


    В лаборатории Оствальда работали видные русские химики И. А. Каблуков, [c.411]

    Оствальд был среди тех европейских ученых, которые открыли и оценили работы Гиббса. В 1892 г. он перевел статьи Гиббса по термодинамике на немецкий язык. Оствальд почти сразу же начал применять теории Гиббса при изучении катализа. Катализ (термин, предложенный Берцелиусом в 1835 г.) — изменение скорости химической реакции в присутствии небольших количеств веществ (катализаторов), которые не принимают видимого участия в реакции. Так, в 1816 г, Дэви установил, что порошкообразная платина [c.114]

    Оствальда, и он предложил Аррениусу место в своей лаборатории. Оствальд поддерживал Аррениуса в плане продолжения работ последнего в области физической химии. [c.120]

    Рациональная шкала Грэма представляет собой частный случай приведенной шкалы Антропова применительно к ртутному электроду. Каких-либо попыток сформулировать более общее понятие рациональной шкалы, распространить ее на другие металлы и использовать ее для сопоставления зарядов и условий адсорбции на различных электродах в работах Грэма не излагается. Термин рациональная шкала нельзя признать удачным. Действительно, как отмечалось выше, применение шкалы, основанной на нулевых точках, может оказаться рациональным в одних случаях и нерациональным в других. Кроме того, он в отличие от термина приведенная шкала не отражает самой сущности этой шкалы. Наконец, рациональная шкала была предложена позднее, чем приведенная шкала, и относилась лишь к ртути (распространение ее на другие металлы в том виде, в каком она была дана Грэмом, превратило бы ее в абсолютную шкалу Оствальда). В дальнейшем поэтому везде будет использоваться термин приведенная шкала потенциалов . [c.254]

    Динамические воздействия на пересыщенный раствор, такие как перемешивание, встряхивание, трение о стенки, звуковые и ультразвуковые колебания,влияют на образование зародышей. Исторические обзоры исследований по кристаллизации содержатся в работах В. Оствальда и М. Фольмера [1]. [c.146]

    М. Планк определил, что невозможно построить периодически действующую машину, которая производила бы только поднятие груза и охлаждение источника теплоты . Эти формулировки исключают возможность создания вечного двигателя П-го рода (Во. Оствальд), который мог бы превращать теплоту в работу без разности температур. Если бы возможно было создать такой двигатель, который мог бы отбирать теплоту от воды океанов и работая при температуре океана, производить полезную работу, то использование этой энергии в течение 150 лет всеми тепловыми машинами и тепловыми электростанциями могло бы снизить температуру океана менее, чем на [c.87]

    Константу Генри удобнее всего определять по данным о растворимости, особенно если она мала. Данные о растворимости достаточно полно представлены в работах , хотя обычно они табулируются в терминах коэффициентов Оствальда или Бунзена. Переход от коэффициента Бунзена р к константе Генри может быть выполнен по формуле  [c.81]

    XX в. в результате работ В. Оствальда, Е. Бингама и их учеников стало ясно, что вязкость многих систем зависит от режима течения. В связи с этим возникла необходимость представлять данные вискозиметрических измерений в таком виде, который отражает зависимость вязкости от скорости или напряжения сдвига. Наиболее наглядно графическое представление результатов исследований. Обычно строят графики двух типов в координатах скорость сдвига (или пропорциональная ей величина) — напряжение сдвига (или пропорциональная ему величина) и вязкость — напряжение сдвига, В качестве величин, прямо пропорциональных напряжению сдвига, используют перепад давлений в капиллярном вискозиметре, момент скручивания нити в [c.127]

    Сравнение вискозиметров типа Уббелоде и тина Оствальда показывает, что на стороне первых имеются значительные преимущества. Во-первых, в вискозиметре Уббелоде измеряется время наполнения шарика и, следовательно, отпадает ошибка от смачивания стенок, наблюдающаяся в вискозиметре Оствальда. Во-вторых, благодаря тому, что оба колена вискозиметра Уббелоде одинаковы, ускорение при опорожнении первого шарика компенсируется замедлением при заполнении второго шарика таким образом, при определении динамической вязкости отпадает необходимость в знании плотности исследуемой жидкости. Последнее положение будет, конечно, справедливо в тех случаях, когда можно пренебречь различиями ускорений различных жидкостей, что бывает на практике. Необходимо отметить, что при применении современных конструкций вискозиметров Уббелоде с дополнительными шариками (см. рис. XI. 16 и XI. 17) получают более надежные и точные результаты, чем при работе со старой конструкцией вискозиметра (рис. XI. 18). [c.295]

    Никакая совокупность процессов не может сводиться только к превращению теплоты в работу, тогда как превращение работы в теплоту может быть единственным результатом процессов (Томсон) Невозможно создание вечного двигателя второго рода (Оствальд) Под вечным двигателем второго рода подразумевается такая маши на, которая производила бы работу только за счет поглощения теп лоты из окружающей среды (без передачи части теплоты холодиль нику). При работе такой машины закон сохранения энергии не на рушается. [c.109]


    Выполнение работы. Для работы используется прибор, и зо-браженный на рис. 28. Заполнить водой уравнительный сосуд и бюретку. В одно колено пробирки Оствальда пипеткой внести 5—6 капель 0,1 н. раствора дихромата калия, в другое колено другой пипеткой — 1 мл 3%-ного раствора пероксида водорода. (Рассчитать, какой объем займет выделившийся кислород, считая плотность раствора пероксида водорода I г/см .) Осторожно соединить пробирку Оствальда с бюреткой, плотно закрыв ее пробкой. При открытом зажиме с помощью уравнительного сосуда устагю-вить уровень в бюретке на нулевое деление, закрыть зажим и проверить прибор на герметичность, поднимая или опуская уравнительный сосуд. При наличии герметичности установить уровень жидкости в бюретке на нулевое деление и в таком положении укрепить уравнительный сосуд. Осторожно повернуть пробирку и полностью перелить раствор пероксида водорода в другое колено пробирки. Одновременно включить секундомер. Наблюдаемое изменение цвета раствора объясняется образованием промежуточных продуктов каталитической реакции. Произвести первое измерение и записать- уровень жидкости в бюретке и время по, секундомеру. В течение первых 10 мин отмечать уровень каждую минуту, при этом жидкость в бюретке и уравнительном сосуде поддерживать на одном уровне. Последующие 10 мин отмечать уровень через каждые 2 мин. Пос 1е того, как реакция почти прекратится вследствие сильного падения концентрации H Oa, оста- [c.46]

    Работа 3. Технические весы. Разновесы. Пикнометр. Вискозиметр Оствальда. Секундомер. Водяная баня. Полистирол. Плексиглас. Толуол. Бензол. Хлороформ. [c.182]

    Описание прибора. Вискозиметр Оствальда представляет собой U-образную трубку (рис. 59), в левом колене которой между метками 2 и 3 находится капилляр. Исследуемую жидкость заливают сначала в правое колено, а затем засасывают в левое так, чтобы ее уровень был выше метки 1. Одновременно с этим уровень в правом колене должен быть несколько ниже расширения в шарике 4. Обычно при работе в вискозиметр наливают строго постоянный объем жидкости (примерно 5—10 мл). Жидкости дают свободно вытекать из левого колена в правое. Когда мениск жидкости достигает отметки 1, включают секундомер, и выключают его, как только уровень жидкости достигнет отметки 2. Таким образом, в вискозиметре Оствальда регистрируют время, необходимое для истечения через -капилляр объема жидкости, заключенного в верхнем шарике 5 между метками / и 2 Чем больше это время истечения, тем большей вязкостью обладает данная жидкость. [c.195]

    Самостоятельной отраслью физической химии электрохимия стала в конце XIX в. после появления фундаментальных работ С. Аррениуса, Ф. Кольрауша, В. Оствальда и др. [c.175]

    В развитии современных представлений о свойствах растворов электролитов и явлении электропроводности большую роль сыграли работы Д. Даниэля, И. Гитторфа, А. Фика, Ф. Кольрауша, С. Аррениуса, В. Оствальда, Я. Вант-Гоффа, В. Нернста, С. Серенсена, П. Вальдена, Я. Бренстеда, П. Дебая, Э. Гюккеля и Л. Онзагера. Теория Дебая и Гюккеля (1923—1925 гг.) позволила количественно описать свойства разбавленных растворов и явилась своеобразным триумфом статистической физики. [c.11]

    Изучение процессов растворения веществ и свойств растворов завершилось созданием основ учения о растворах (Вант-Гофф, Аррениус, Оствальд, Менделеев). В это же время Вант-Гофф и Аррениус разработали классическую теорию химической кинетики, а работы Гитторфа, Кольрауша, Нернста составили ядро электрохимии. [c.7]

    Оствальд определил термохимию как учение о превращении химической энергии в тепловую энергию . Однако это определение не выдерживает критики, так как в настоящее время стало очевидным, что понятие химическая энергия соверщенно неопределенно, а теплота вовсе не является формой существования энергии, но наряду с работой представляет собой способ передачи энергии от одних тел к другим и проявляется только Б процессах этой передачи. [c.4]

    Вискозиметр Оствальда (для первого варианта работы) или вискозиметр Уббелоде с висячим уровнем (для второго варианта работы). [c.140]

    Вязкость свежеприготовленных растворов желатина измеряют с помощью вискозиметра Оствальда или Уббелоде. Методика определения вязкости растворов приведена в работе 21. [c.147]

    Невозможность подобного устройства Р. Клаузиус (1850) считал самоочевидным и только позднее (1864) понял, что фактически речь идет о ранее неизвестном законе физики, справедливом не только для данного простейшего примера, но и для любых, сколь угодно сложных макроскопических устройств. Клаузиус сформулировал второй закон в виде утверждения невозможен некомпенсированный переход теплоты от тел с низкой температурой к более нагретым. Сейчас используют более однозначные формулировки. Их предложено несколько. Наиболее простая из них принадлежит В. Томсону невозможно построить периодически действуюш,ую тепловую машину, работа которой основана на охлаждении тела с наиболее низкой температурой . В. Оствальд сократил ее до следующей Увечный двигатель второго рода невозможен . При этом имеется в виду любое устройство, позволяющее в циклическом процессе использо- [c.45]

    Понадобились работы М. Фарадея, Г. Дэви, Е. Митчерлиха, И. Деберейнера, Г. С. Кирхгофа, Ю. Либиха, И. Берцелиуса и многих других ученых того времени, чтобы установить специфичность каталитических реакций и необходимэсть новых трактовок для объяснения каталитических процессов. Однако первые теории страдали метафизическим идеализмом (И. Берцелиус) или механицизмом (Ю. Либих). На протяжении почти 70 лет в Западной Европе длился спор мэжду представителями витализма в катализе (Л. Пастер) и механицистами (Ю. Либих), который закончился появлением энергетической теории В. Оствальда, отрицавшей материю. [c.86]

    Вальтер Фридрих Нернст (1864—1941)—немецкий физико-химик, в 1887—1889 гг. работал ассистентом В. Оствальда в Лейпциге, с 1894 г. профессор Геттингенского университета. По его инициативе в Геттингене в 1896 г. был построен Институт физической химии и электрохимии. Разработал теорию электролитического растворения металлов и электродных потенциалов и теорию диффузионных потенциалов. Впервые объяснил причину и механизм возникновения электродвижущих сил. В 1893 г. опубликовал учебник Теоретическая химия с точки зрения закона Авогадро и термодинамики , выдержавший много изданий (15-е издание вышло в 1926 г.). Лауреат Нобелевской премии (1920), [c.315]

    Датский физико-химик Хендрик Виллеи Бакхейс Розебои (1854—1907), как и Оствальд, по достоинству оценил работы Гиббса и всячески (притом весьма успешно) способствовал их популяри-. ации в Европе. [c.116]

    В эту переломную эпоху перехода от фактов, ждущих своего объяснения, к теоретическим выводам в совершенно новой и мало понятной области химии—катализе—большие услуги оказала физическая химия, устанавливающая закономерности на основе каталитических реакций. В 1870 г. Л. Вильгельми открыл кинетический закон действия масс при каталитическом исследовании инверсии тростникового сахара под действием разбавленных кислот. Это позволило позднее в 1867 г. К. Гульдбергу и П. Вааге сформулировать общий закон действия масс в виде динамического равновесия. К этому времени относятся классические исследования Я. Вант-Гоффа по законам кинетики (принципы различия моно-, ди- и по-лимолекулярных реакций), работы М. Боденштейна по газовым реакциям и их кинетике и исследования В. Оствальда по катализу. [c.18]

    Дальнейшее развитие теории аналитической химии связано с открытием Н. Н. Бекетовым (1827—1911) равновесия при химических реакциях и закона действующих масс К- М. Гульдбер-гом (1836—1902) и П. Вааге (1833—1900). Появление в 1887 г. теории электролитической диссоциации С. Аррениуса (1859— 1927) дало в руки химикам-аналитикам эффективный количественный метод управления химическими реакциями, а успехи химической термодинамики еще больше расширили эти возможности. Существенную роль сыграла монография В. Оствальда (1853—1932) Научные основы аналитической химии в элементарном изложении , вышедшая в 1894 г. Большое значение для развития окислительно-восстановительных методов аналитической химии имели работы Л. В. Писаржевского (1874—1938) и Н. А. Шилова (1872—1930) по электронной теории окислитель-но-восстановительных процессов. [c.11]

    Выполнение работы. Опыт проводится в приборе, показанном на рис. 28. Прибор состоит из бюреткй 1 вместимостью 100 мл, уравнительного сосуда 2 и стеклянного тройника 3, на один конец которого надета каучуковая трубка с зажимом. На другой конец тройника надета каучуковая пробка 4, плотно закрывающая бюретку, третий конец тройника присоединяется к склянке Оствальда 5. Кусочек металла (0,1 г) взвесить на аналитических весах с точностью до 0,0002 г на предварительно взвешенном часовом стекле. Взвешенный металл поместить в одно колено склянки Оствальда. В другое колено, через специальную воронку с длинным концом налить 10—12 мл 2 н. раствора хлороводородной кислоты. Осторожно укрепить склянку Оствальда в зажиме штатива и присоединить к тройнику, плотно закрыв пробки в бюретке [c.35]

    Рассмотрим теперь проблему абсолютного скачка потенциала. Экспериментально измерить отдельный гальвани-потенциал в принципе невозможно, так что опытным путем проблему абсолютного скачка потенциала решить нельзя. Другой возможный подход к этой проблеме состоит в попытке термодинамического расчета величины фр. Такой путь впервые был намечен В. Оствальдом. Э. д. с, гальванического элемента рассчитывают по максимальной работе Wm протекающего в нем химического процесса Аф = WmlnF. Если записать аналогичные соотношения для процесса, идущего в электроде из металла /, то по Оствальду [c.104]

    В начале XX в. химическая термодинамика уже представляла собой обширную и быстро развивающуюся область физической химии. Одновременно с Я. Ваит-Гоффом и всей европейской школой его последователей химическую термодинамику развивал в Америке Дн<. Гиббс, который ввел в науку новое представление о так называемых химических потенциалах. На этой основе он разработал общий метод решения физико-химических задач. Этот метод оказался исключительно эффективным и плодотворным. Однако работы Длс. Гиббса были опубликованы в очень малораспространенном американском лсурнале и остаиались плохо известнымрг его современникам. Только в 1911 г. Б. Оствальд открыл Дж. Гиббса ои перевел его труды на немецкий язык л издал их в Европе. С этих пор метод химических потенциалов Гиббса все более вытесняет метод круговых процессов Вант-Гоффа и становится основным методом химической термодинамики. [c.7]

    Выполнение работы. Приготовить разбавлением исходного 0,2%-ного раствора метилметакрилата в хлороформе по 30 мл следующих растворов (включая исходный), % . 0,02 0,05, 0,1, 0,15. Измерить время их истечения в вискозиметре Оствальда или Убел-лоде (рис. 68). Вискозиметр предварительно промыть хромовой смесью, затем дистиллированной водой и высушить в сушильном шкафу. Укрепить вискозиметр вертикально в термостате при 20° С. В шарик широкого колена вискозиметра Оствальда вводят пипеткой 10—15 мл жидкости. Ее объем постоянный во всей серии опытов. [c.290]

    Выполнение работы. В шесть пробирок налить по 10 мл 1,5%-ного раствора желатина и по 5 мл следующих растворов I) 0,3 и. НС1, 2) 0,025 н. НС1, 3) 0,003 н. H I, 4) дистиллированной воды, 5) 0,05 н. NaOH и 6) 0,2 н. NaOH. Измерить pH полученных растворов на потенциометре (см. работу 47). Определить время истечения растворов вискозиметром Оствальда (см. работу 107) в термостате при 35° С. При той же температуре определить время истечения воды. Рассчитать относительную вязкость. Результаты занести в таблицу по форме  [c.293]

    Свойствам кислот в основных растворителях посвящено много работ, но только в немногих из них сила кислот определена количественно. Краус и Брей, а также Смит (1927) вычислили константы диссоциации ряда мпнеральных и органических соединений в аммиаке на основании данных об электропроводности. Подсчет констант они произвели по несколько видоизмененному уравнению Оствальда, экстраполируя результаты на нулевую ионную силу. [c.282]

    Теория обосновывает эмпирические закономерности Шульце — Гарди, Оствальда. Теория устойчивости лиофобных золей развивается в новых исследованиях Б. В. Дерягина, а также в работах А. Д. Ше-лудко с сотрудниками, Ю. М. Глазмана, И. М. Дыкмана и др. Теория Дерягина дает возможность обосновать закономерности коагуляции лиофобных золей электролитами и их смесями при низких и средних значениях потенциала, [c.94]

    Эти положения были облечены в математическую форму в работах В. Оствальда, который рассматривал диссоциацию бинарного электролита, например кислоты СН3СООН, на ионы  [c.70]

    Принятая в настоящем руководстве система изложения является результатом 40-летнего опыта преподавания в Ленинградском государственном университете физической химии и ряда курсов, относящихся к физико-химическому циклу наук. Оценка подготовки специалистов, окончивших ЛГУ, на местах, их работы подтверждает положительный результат системы обучения, нащедшей отражение в книге. Эта система отличается от обычной, ведущей начало от Оствальда. За более чем вековой период существования эта классическая система изложения во многом устарела. Нами делается попытка,отказаться от некоторых традиций, которые, по мнению авторов, не соответствуют современному состоянию этой науки. [c.3]

    Работы, посвященные изучению коллоидно-дисперсных систем, выполненные зарубежными учеными В. Оствальдом, Жигмонди, Фрейндлихом, Сведбергом, Кройтом и др., также сыграли важную роль в развитии коллоидной химии. [c.8]


Библиография для Оствальд и его работы: [c.168]   
Смотреть страницы где упоминается термин Оствальд и его работы: [c.219]    [c.163]    [c.90]    [c.219]    [c.292]    [c.281]    [c.232]    [c.315]   
Смотреть главы в:

История химии -> Оствальд и его работы

История химии -> Оствальд и его работы




ПОИСК





Смотрите так же термины и статьи:

Оствальда



© 2025 chem21.info Реклама на сайте