Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Уран естественный

    Естественные радиоактивные изотопы, т. е. изотопы, образующиеся в природе помимо деятельности человека, были обнаружены у очень многих элементов начала и середины периодической системы. В табл. 10 приводятся естественные радиоактивные изотопы элементов с порядковыми номерами от 1 до 83 (т. е. до тех естественных элементов, радиоактивные свойства которых были давно открыты и изучены), радиоактивность которых в настоящее время бесспорно установлена. Из табл. 10 видно, что, помимо девяти тяжелых радиоактивных элементов, известных еще с первых десятилетий исследования радиоактивности (полоний, астат, радон, франций, радий, актиний, торий, протактиний и уран ), естественные радиоактивные изотопы существуют, по крайней мере, еще у 46 химических элементов. Таким образом, большая часть элементов периодической системы обладает естественной радиоактивностью. [c.60]


    При весовом проценте равном 0,7115 (т. е. при естественном содержании U ), из формулы КАЭ следует, что уран в виде UFg стоит 39,27 долл кг. Металлический уран естественного состава 404 [c.404]

    Уран естественный и растворимый. ..... [c.443]

    Уран естественный нерастворимый. ..... [c.443]

    При расчетах систем на естественном уране каждый из множителей в условии критичности долн<ен быть определен с хорошей степенью точности, так как для этих систем, даже с наиболее благоприятным расположением горючего и замедлителя, коэффициент размножения превышает единицу всего на несколько процентов. В силу этих обстоятельств небольшие ошибки в величинах /, р , е и г сильно искажают значение коэффициента [c.465]

    Например, для естественного урана, если он однородно размешан с замедлителем, в случае бесконечного разбавления резонансный интеграл равен приблизительно 280 барн. Если же уран и замедлитель физически разделены и величина 2 остается той же, что и в первом случае, величина резонансного интеграла равна примерно 9 барн, т. е. сокращается более чем в 30 раз. [c.473]

    Нейтроны, возникающие при делении с энергией выше порога, могут стать важным фактором в процессах деления ядер. Напрпмер, в естественном уране относительное содержание на два порядка больше, чем содер- [c.511]

    Часто первый продукт распада радиоактивного нуклида не является стабильным, а распадается далее. За немногими исключениями, так ведут себя почти все естественные радиоактивные вещества, входящие в три основных семейства (ряда) радиоактивных элементов (ряд уран — радия, ряд тория и ряд актиния). В этих радиоактивных семействах имеется один наиболее долгоживущий материнский элемент, распадающийся на дочерние и внучатные короткоживущие радиоактивные элементы. В общем случае превращения можно представить в виде схемы  [c.154]

    Однако, прежде чем углубляться в дальнейшее обсуждение, полезно повторить и несколько расширить кое-какие сведения, изложенные в разд. 2.6, ч. 1. Прежде всего напомним, что атомное ядро состоит из субатомных частиц двух типов протонов и нейтронов. Вместе они называются нуклонами. Напомним также, что все атомы определенного элемента имеют одинаковое число протонов, называемое атомным номером элемента. Однако атомы одного элемента могут иметь неодинаковое число нейтронов и, следовательно, различные массовые числа массовое число представляет собой суммарное число всех нуклонов в атомном ядре. Атомы с одинаковым атомным номером, но с различными массовыми числами называются изотопами. Чтобы различать изотопы одного элемента, при них указывают их массовые числа. Например, три естественные изотопа урана обозначают как уран-233, уран-235 и уран-238, где приведенные чис.пенные величины указывают соответствующие массовые числа. Эти изотопы обозначаются также с помощью химических символов как 9 и и Здесь верхние индексы означают массовые числа, а нижние- [c.244]


    После прочтения предыдущих разделов у вас могло возникнуть несколько вопросов. Например, чем объяснить, что некоторые радиоизотопы, подобно урану-238, обнаруживаются в природе, тогда как другие не встречаются в естественном состоянии и их приходится синтезировать Ответ на этот вопрос основан на том обстоятельстве, что разные ядра распадаются с различными скоростями. Уран-238 распадается очень медленно, тогда как многие другие ядра, как, например, сера-35, претерпевают быстрый распад. Чтобы лучше понять явление радиоактивности, важно разобраться в скоростях радиоактивного распада. [c.253]

    В качестве основной особенности, характеризующей сырье, следует указать на огромные масштабы его добычи и переработки. В настоящее время в мире ежегодно извлекается и перерабатывается 10" т, т. е. 100 млрд. т горных пород, а ведь в качестве сырья, подвергаемого химическому переделу, используются не только горные породы. Чтобы представить себе масштаб этого рода человеческой деятельности, достаточно простейшего расчета на каждого человека, включая младенцев и стариков, ежедневно приходится 100 кг извлеченных горных пород. Учитывая, что масштаб производств в последние десятилетия значительно возрос, а само производство как в нашей стране, так и за рубежом в целом развивалось по экстенсивной схеме, возникла серьезная проблема истощения естественных источников сырья. Как видно из цветного рисунка I, при сохранении нынешних темпов потребления нефть, газ, уран-235, легкие цветные металлы (исключая алюминий) могут быть исчерпаны к середине следующего столетия. [c.168]

    Уран. Элемент № 92 — уран и — является последним радиоактивным элементом, который встречается в природе. Все остальные так называемые трансурановые элементы, получены искусственно. В силу того, что уран является наиболее распространенным ядерным горючим, его физические и химические свойства изучены наиболее подробно. Изотопы (7 1д=4,5-10 лет) и (8,5-10 лет) являются родоначальниками двух естественных радиоактивных рядов, а (1,6-10 лет) входит в радиоактивный ряд нептуния. Особая роль урана в развитии науки о радиоактивности состоит в том, что само явление радиоактивности было впервые обнаружено именно в минералах урана. Кроме того, уран — это первый элемент, для которого была обнаружена цепная реакция деления под действием нейтронов (1939) .  [c.437]

    Седьмой, и последний, период начинается с Рг (2 = ( а 1ьм(,н к )Ио =87). Последний из естественных элементов, уран, имеет 2 = 92. Электронные конфигурации всех элементов приведены в табл. 2.1. Элементы, следующие за ураном, получены искусственно и радиоактивны (разд. 1.10.4). [c.55]

    Естественные радиоактивные элементы в периодической системе, Первые.из открытых радиоактивных элементов располагались в самом конце периодической системы элементов. Основные законы и закономерности радиоактивного распада были установлены как раз на примере элементов с порядковыми номерами от 84 (полоний) до 92 (уран). Были обнаружены следующие специфические свойства радиоактивных элементов а) способность вызывать почернение фотопластинки (фотохимический эффект) б) выделение газов при радиоактивном распаде (образование гелия и различных изотопов радона) в) выделение тепла при радиоактивном распаде г) возбуждение флуоресценции. [c.59]

    Уран-238 и уран-235 являются наиболее распространенными изотопами урана. Ниже приведены данные о содержании трех естественных изотопов урана в элементарном уране и о периодах полураспада этих изотопов  [c.436]

    Естественные (природные) радионуклиды либо содержатся как химические элементы в земной коре (уран, торий) или в атмосфере (радон), либо образуются там в результате природных ядерных реакций (уран-233, плутоний-239, нептуний-237) и ядерных реакций, инициированных космическим излучением (тритий, углерод-14, аргон-41). Осаждаясь атмосферными осадками и вымываясь поверхностными и грунтовыми водами, естественные радионуклиды попадают в гидросферу. [c.307]

    Радиоактивные вещества естественного (природного) происхождения в гидросфере. Такие радиоактивные элементы, как уран и торий, были известны задолго до открытия радиоактивности, они широко распространены в природе, содержатся в рудах,, горных породах, почвах, воде рек и морей, в живых организмах. Периоды полураспада природных изотопов урана и тория столь велики, что они сохранились в земной коре с момента ее образования. [c.308]

    Содержание некоторых естественных радионуклидов в гидросфере следующее тритий — 200— 900 Бк/м бериллий — 0,7 10" Бк/м рубидий-87—630 Бк/кг, радий-226 — 0,1—4,8 Бк/кг, уран-238 — [c.310]

    Определению плутония не мешают уран, молибден, алюминий, бериллий, галлий и, естественно, железо. Мешают марганец и хром, так как перманганат и бихромат, получающиеся в результате окисления двуокисью свинца, прекрасно титруются ионами Fe +. Перманганат может быть предварительно восстановлен щавелевой кислотой до обесцвечивания раствора. Хромат может быть восстановлен до трехвалентного хрома мышьяковистой кислотой, которая не восстанавливает плутоний. [c.239]


    Хотя уран является естественно радиоактивным элементом, число а-частиц, испускаемых его долгоживущими изотопами 11 (Г =4,5-10 лет), (Г =8,8 10 лет) и (7 =.2,52.10" лет), содержание которых в природной смеси 99,28, 0,714 и 0,0057% соответственно, недостаточно для определения микроколичеств урана. [c.253]

    Сегодня естественно взглянуть на уран глазами инженера и, если хотите, потребителя. Но это — тема особого разговора. [c.357]

    В естественный уран, кроме урана-235 и урана-238, входит уран-234. Содержание этого редкого изотопа выражается числом с четырьмя нулями после запятой. Гораздо доступнее искусственный изотоп — уран-233. Его получают, облучая в нейтронном потоке ядерного реактора торий  [c.367]

    Новые изотопы, получающиеся при радиоактивном распаде, часто сами радиоактивны, и позже они также распадаются. Уран и торий являются родоначальниками трех естественных рядов радиоактивного распада, которые начинаются с и-238, и-235 и ТН-232. Каждый ряд завершается образованием стабильного изотопа свинца. Ряд распада урана-238 вкльэчает стадии, показанные на рис. У.13. [c.325]

    Важно отметнтЕ., что только благодаря лучшим характеристикам гете-])огснных систем стало возможным впервые вообще получить цепную ядерную реакцию. Дело в том, что едипствепными, доступными в то время и эффективными замедляющими материалами были графит и вода. Но даже в гомогенной системе из графита, с ого весьма малым сечением поглощения, и с естественным ураном ценная реакция невозможна. Это легко показать. Если система конечных размеров критична, то [c.464]

    Гольдшмидт высказал предположение, что источником редких элементов в угле являются растения, в которые они попали из почвы [3, с. 144]. Некоторые углехимики считают, что редкие элементы накапливаются в угле в результате ионного обмена. Многие из торфов и молодых бурых углей, содержащие большое количество гуминовых кислот, являются естественными ионообменными материалами. В этом случае допускается, что редкие элементы содержатся в угле в виде различных гуматов — металлических солей гуминовых кислот [10]. Ангелова установила, что уран связан с органическим веществом угля в форме устойчивых химических соединений [11]. [c.123]

    Большой интерес представляют различного типа ядерные реакции с участием нейтронов. Нейтроны присутствуют в космическом излучении, образуются в (а, оп ) и (у, о )-реакциях, а также возникают при спонтанном делении урана. Так, нейтроны образуются, если легкие элементы (Ь1, Ве, В, Н, Р, Ма, Mg, А1) бомбардировать а-частицами или частицами, возникающими из естественно-радио-активных элементов, таких, как полоний. Примером такой реакции может служить ранее рассмотренная ядерная реакция Ве (а, о ). Поэтому комбинации Ве — 1) и Ве — ТЬ в соответствующих минералах могут рассматриваться как природные источники нейтронов (например, обогащенные ураном ниоботанталовые минералы, содержащие небольшое количество бериллия). Самой простой реакцией, вызванной нейтронами, является образование дейтерия из водорода [Н (у, о )ОЧ. Она протекает в результате поглощения нейтронов во всех водородсодержащих веществах. Захват нейтронов может изменить изотопный состав нескольких элементов в урано- [c.22]

    На современном атомном заводе все механизировано. Большое число операций проводят методом экстракции и ионного обмена. Они используются и на начальной и на последующих стадиях переработки ядерного горючего. При переработке руды громадные противоточ-ные ионообменные колонны с анионитом поглощают пз пульпы анионные сульфатные комплексы уранила иОг(504)] . Экстракцию проводят ТБФ или этилметилкетоном. Извлекают и, Ри, а осколкн остаются в водном растворе. Потом восстанавливают Ри (VI)->Pu (IV). Ри( ) переходит в водную фазу, а уран — в органическую. Чистый Ри осаждают в виде РиОг, отфильтровывают. Лопаточкой собирают Ри02 в ампулу, затем восстанавливают металлическим кальцием до металлического Ри. Естественно, все операции механизированы, так как радиоактивность очень высокая. [c.229]

    В результате первоначального изучения естественной радиоактивности было установлено, что она характерна для ядер тяжелых атомов. Ядра с Z = 84—92 не имеют ни одного устойчивого изотопа. Выявлено 39 радиоактивных изотопов тяжелых ядер, которые генетически связаны между собой и образуют три радиоактивных семейства. Родоначальниками этих семейств являются уран ( э и), актиноуран ( й >Аси) и торий ( 5оТЬ). Семейство тория было рассмотрено выше (табл. 14). В табл. 19 показана генетическая связь радиоактивных изотопов семейств урана и актиноурана. [c.58]

    Естественная радиоактивность. Явление радиоактивности было открыто в 1896 г. известным французским физиком АнриБек-керелем , который установил, что металлический уран, а также его минералы и соединения испускают невидимое излучение. Воздух по соседству с препаратами становится хорошим проводником электричества. Излучение вызывало почернение фотографической пластинки, завернутой в черную бумагу или закрытой непрозрачными предметами. Излучательная способность урансодержащего препарата не зависела от температуры, от его агрегатного состояния, а определялась только содержанием урана. Беккерель из этих наблюдений сделал заключение, что способностью к излучению обладают атомы урана. [c.393]

    Успехи в синтезе трансурановых. элементов и синтез трансактинидов (Ки, 105—107) поставили впрямую вопрос о верхней границе Периодической системы. Эта проблема прив.пекала внимание ученых в течение длительного времени. Еще Д.И. Менделеев, исправив атомные массы тория и урана, поместил их в IVB- и VIB-группы. Синтез нептуния и плутония позволил выделить в проблеме конца системы два аспекта о естественной границе и о возможном пределе синтеза искусственных элементов. Первый аспект в земных условиях решается просто последним элементом в их естественной последовательности является уран. Однако, учитывая возможность самопроизвольного синтеза Np и Ри при воздействии на природный уран нейтронов (за счет космических лучей, естественных процессов деления), можно полагать, что на. Земле последним природным элементом является плутоний. Если же рассматривать Периодический закон в космическом масштабе, то проблема естественного конца системы становится неоднозначной и [c.517]

    Таким образом, кроме трития и углерода-14, в земной коре накапливаются плутоний-239, нептуний-237 и уран-233. Все они формируют естественную радиактивность гидросферы. [c.310]

    Старик и сотр. [210] применили соосаждение плутония с диацетатом уранила для очистки плутония от естественных а-активных радиоэлементов (Ра, ТЬ, На, Ро), содержащихся в урановой смоляной руде, и показали возможность полного отделения от указанных элементов при 2-кратном осаждении. Выделение проводят из 0,1 N азотнокислого раствора. Вначале в этом растворе окисляют плутоний до шестивалентного состояния броматом калия. При окислении плутония марганец, содержащийся в руде, выпадает в осадок в виде перекиси. Это способствует лучшей очистке плутония от радиоэлементов (особенно от протактиния). После отделения осадка перекиси марганца Ри(У1) осаждают с осадком диацетата уранила, при 90°С двойным объемом 45%-ного раствора ЫаСООСНз из раствора 2 N НЫОз. Плотный кристаллический осадок диацетата уранила отделяют декантированием и после промывания растворяют ъ 2 N НЫОз. Эту операцию повторяют. После растворения осадка производят осаждение из восстановительной среды и тем самым отделяют плутоний от урана. Для более тщательного отделения урана авторы работы [210] после коицентрирова ния плутония (соосаждение с гидроокисью) применяли экстракцию ди-этиловым эфиром. [c.280]

    Примечания, х — порядок распространения данного элемента. А — элементы являются основными составными частями живого вещества, гидросферы и атмосферы. Кислород, очевидно, наиболее важный элемент литосферы, в то время как углерод — составная часть осадочных горных пород. В — редкие газы, находящиеся в атмосфере. Не — выделяется при радиоактивном распаде ураиа и тория, но одио-временио теряется в мировое пространство. "Аг образуется при превращении радиоактивного К и является ведущим в изотопном составе атмосферного аргона. Содержание аргона и гелия в породах зависит от содержания радиоактивных изотопов и возраста. С — элементы в естественных условиях земной коры не встречаются. ) —данные о содержании элемента отсутствуют нлн скудные. Е — элементы при сутствуют как недолговечные радиоактивные атомы от распада рядов урана и тория. F —результат слабых процессов. захвата нейтронов ураном.  [c.94]

    Железо и марганец являются передатчиками кислорода в процессах дыхания и принимают участие в ферментативных реакциях. Железо входит в состав дыхательного фермента. Соли кальция стимулируют развитие микроорганизмов, медь входит в состав ферментов. Кроме перечисленных элементов, для жизнедеятельности микроорганизмов необходимы так называемые микроэлементы цинк, бор, кобальт, никель, уран, телур и др-Они необходимы как стимуляторы развития и роста микробов, каталитически ускоряющие сложные физиологические процессы и действующие на физико-химические свойства коллоидов протоплазмы, усваиваются они из веществ, входящих в состав естественной питательной среды. [c.515]

    После цепи замечательных открытий наступила пора решения сложнейших технических и технологических проблем. Нужно было в невиданных доселе масштабах добывать урановую руду, наладить металлургию нового важнейшего металла, из металла приготовить сплавы, стойкие к радиационным воздействиям и достаточно прочные, чтобы можно было готовить из них реакторные тепловыделяюш,ие элементы (твэлы). А еш,е нужно было научиться разделять изотопы элемента № 92, научиться работать с источниками радиоактивности, превосходящими во много раз естественную радиоактивность всего вещества нашей планеты, очищать облученный уран от осколков деления и вновь пускать его в дело... [c.357]


Смотреть страницы где упоминается термин Уран естественный: [c.212]    [c.186]    [c.204]    [c.266]    [c.510]    [c.451]    [c.15]    [c.106]    [c.141]    [c.15]    [c.106]   
Смотреть главы в:

Изотопы, источники излучения и радиоактивные минералы (каталог) -> Уран естественный




ПОИСК







© 2025 chem21.info Реклама на сайте