Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическое модифицирование поверхности оксида алюминия

    Сразу же как только частицы кремнезема сформировались, их поверхность может оказаться модифицированной в результате присоединения к ней различных атомов или групп, способных изменить физическое и химическое поведение частиц. Так, например, если поверхность частицы кремнезема полностью покрывается одним слоем оксида алюминия, даже толщиной в одну или две молекулы, то частица ведет себя так, [c.559]

    Некоторые характеристики и свойства алюмосиликатных ионов на поверхности кремнезема рассматривались в гл. 3, где была приведена константа химического равновесия реакции образования алюмосиликата, и в гл. 4, в которой были описаны способ образования и свойства золей кремнезема, модифицированных за счет введения алюмосиликата. Влияние оксида алюминия как примеси на растворимость кремнезема упоминалось в гл. 1, а его влияние на токсичность кремнезема будет рассмотрено в гл. 7. [c.986]


    Для решения ряда задач в качестве наполнителей колонок в ВЭЖХ можно использовать немодифицированные минеральные носители, среди которых следует выделить кремнеземы, оксид алюминия, оксиды титана и циркония. Также были предприняты попытки использования микрочастиц благородных металлов (золото, платина, палладий) и меди. Однако селективность разделения на немодифицированных неорганических материалах обычно однотипна, и эта ограниченность адсорбционных свойств не позволяет решать многочисленные задачи по разделению в ВЭЖХ. Направленное изменение адсорбционных свойств решается с помощью методов химического модифицирования поверхности, позволяющих ковалентно закреплять практически любые классы химических веществ. Для понимания основных тенденций направленного химического модифицирования в развитии сорбентов для ВЭЖХ следует разобраться в основных механизмах разделения. [c.363]

    Получить более однородную поверхность адсорбента, блокировать активные центры, вызывающие превращения ОСС, можно путем изменения химической структуры поверхности оксида алюминия. Так, модифицирование оксида алюминия, предварительно прокаленного при 400°С, водой (2,5-3,0 мас.%) позволяет разделить на группы модельные и нефтяные смеси ОСС и углеводородов [125]. Использование более совершенного оборудования [172а] позволило провести на этом же адсорбенте определение времени удерживания ряда индивидуальных ОСС и установить возможность группового отделения тиациклоалканов, тиофенов и углеводородов, а также возможность разделения тиофенов и бензотифенов по числу циклов в молекуле. [c.47]

    Химия поверхности оксвда алюмшшя. Среди минеральных носителей для химического модифицирования оксид алюминия по распространенности занимает второе место после кремнезема. Более редкое его применение связано во-первых, с меньшей, чем у кремнезема вариабельностью размеров пор и величин удельной поверхности, во-вторых, с наличием на поверхности А12О3 активных центров, обусловливающих различные неконтролируемые превращения органических или элементоорганических модификаторов. [c.56]

    Иные пути создания обращенно-фазовых сорбентов, близких к идеальному на основе кремнеземов, пока недостаточно разработаны. Получение обращенно-фазовых сорбентов, исходя из литий- или магнийорганических соединений, осложняется тем, что сорбенты необходимо отмывать от малорастворимых неорганических соединений, и применение этих ьюдификаторов требует гораздо больших предосторожностей при работе. (Следует отметить, что существуют и другие пути получения обращенно-фазовых сорбентов, не связанные с химическим модифицированием поверхности неорганических материалов — оксидов кремния, циркония и алюминия — например, синтез частиц определенного размера, заранее содержащих заданное количество очень мелких частиц неорганического материала и органических компонентов, молекулярный импринтинг и другие, которые в данном разделе рассматриваться не будут. О новых путях синтеза см. работу [129]). [c.406]


    Однако при переходе к поверхностям, обладающим большей химической активностью, нежели кремнезем, эта проблема встает в полный рост. В самом деле, на таких поверхностях, как оксид алюминия, оксид титана и др. присутствуют многочисленнные льюисовские кислотные центры. При взаимодействии с донорами протонов, такими как галогеноводороды, на поверхности могут образовываться чрезвычайно сильные комплексные кислоты, которые способны вступать в реакции с молекулами модификатора и с привитыми группировками, например, вызывать протолиз связи 81—С. В предельном случае на поверхности может вообще не оказаться привитых органических групп. Кроме того, галогеноводороды могут просто химически взаимодействовать с поверхностью таких носителей (с образованием галогенидов и воды) и тем самым менять структурно-геометрические параметры носителя и, естественно, вызывать десорбцию уже привитых групп. Подобное разъедание поверхности (за счет комплексообразования) способны вызывать также и амины. Выделяющиеся при модифицировании спирты, конечно, менее реакционноспособны, чем галогеноводороды или амины, однако и здесь возникают определенные трудности. Во-первых, алкоксисиланы малореакционноспособны в реакции модифицирования и не позволяют достичь высоких степеней прививки. Во-вторых, и в этом случае теоретически возможно образование на поверхности сильных протонных кислот (хотя, конечно, это менее актуально, чем в случае галогеноводородов). И, наконец, в-третьих, с самими образующимися спиртами на льюисовских кислотных центргьх могут происходить различные превращения (дегидратация, полимеризация образующихся олефинов и т.д.), что загрязняет получаемый модифицированный носитель и затрудняет его отмывку. Итак, при модифицировании оксидов с более высокой, чем у кремнезема, химической активностью, перед исследователем встает задача выбора модификатора, не дающего в реакции модифицирования реакционноспособных побочных продуктов. [c.74]

    Зизин и Иванова [155] использовали метод линейной жидкостно-адсорбционной хроматографии для определения группового химического состава нефтяных фракций. В качестве сорбента использовщхи оксид алюминия, емкость линейного участка изотермы сорбции которого была увеличена предварительной сорбцией на его поверхности воды. Элюентом служил изооктан, а детектором - интерферометр ИТР-2, одна из кювет которого была сделана, проточной. Эта система позволяла разделять нефтепродукты на насыщенные, моно- и бициклические ароматические углеводороды. Подобный метод [156] использовали и для определения группового состава продуктов газового конденсата с т. кип. 70-210 °С. Разделение проводили на модифицированной водой Al Oj с детектором по диэлектрической проницаемости. В качестве подвижной фазы использовали -гексан. [c.111]

    Модифицированные адсорбенты. Одним из перспективных направлений изменения и целенаправленного регулирования сорбционных характеристик промышленных адсорбентов является химическое модифицирование их иоверхности. Часто, учитывая наличие гидроксильного покрова на поверхности силикагелей, активного оксида алюминия, цеолитов, в основе ука-занногр процесса лежат химические реакции гидроксильных групп на поверхности твердофазной пористой матрицы (по механизму электрофильного или нуклеофильного замещения) с подводимыми к ним реагентами-модификаторами. Замещение гидроксилов или протона в гидроксилах на другие функциональные группы (аминные, сульфидные, фосфор-, ванадий-, хром-, титансодержащие и др.) позволяет в широких пределах регулировать активность сорбента ио отношению к разным адсорбатам, создавать адсорбенты с избирательными характеристиками и с новыми свойствами. Среди новых методов модифицирования одним из наиболее иерсцективных является метод молекулярного наслаивания, обеспечивающий поатомную химическую сборку на иоверхности твердого тела мономо-лекулярных и многослойных поверхностных наноструктур. Разработано аппаратурное оформление процесса молекулярного наслаивания в установках проточного типа и при пониженном давлении. [c.262]

    При анализе же низкомолекулярных веществ в хроматографическом разделении используют преимущественно взаимодействие раствора с поверхностью материала в колонке. С этой целью были разработаны жесткие хроматографические сорбенты, в частности на основе силикагеля с разным характером поверхности. В хроматографии на силикагеле, оксиде алюминия и модифицированных силикагелях с химически закрепленной полярной фазой для разделения используют взаимодействия между полярными группами определяемого вещества и сорбента. Кроме этих хроматографических материалов широко применяют гидрофобизированные силикагели, взаимодействующие с неполярными группами веществ. Хроматографию на гидро-фобизированных сорбентах принято называть хроматографией на обращенных фазах, и это потому, что полярность исполь- [c.231]


    Тетрабутилолово в этих условиях на кремнезем не прививается, то есть образец после модифицирования не содержит ни олова, ни углерода. В то же время на оксиде алюминия после синтеза остается некоторое количество оловоорганики (соответствующее плотности прививки 0,3 нм ). Однако, по всей видимости, эта оловоорганика находится на поверхности в физически сорбированном состоянии, так как промывка образца метанолом ведет к ее полному удалению с поверхности. Полученные результаты не являются неожиданными, так как тетраорганилстанна-ны обладают довольно низкой химической активностью. [c.133]

    В подавляющем большинстве случаев в адсорбционной хроматографии в качестве сорбента используют силикс1гель, который обладает совокупностью различных по своей природе силанольных и силоксановых групп. Популярность силикагеля связана с доступностью разнообразных по геометрической структуре образцов, высокой технологичностью их получения, относительно низкой себестоимостью и высокой селективностью при групповом разделении углеводородов, а также при разделении изомеров замещенных ароматических углеводородов. Последнее свойство широко используется при анализе группового состава различных фракций перегонки нефти и топлив. К числу существенных недостатков силикагеля можно отнести сильную адсорбцию на силикагеле ряда аминов и недосточно высокую гидролитическую устойчивость. Указанные недостатки менее характерны для оксидов алюминия и циркония, которые, в свою очередь, обладают высокой реакционной способностью по отношению к основаниям Льюиса, таких, как органические кислоты, фосфаты, фториды, что также ограничивает их применения. Общим недостатком использования всех минеральных оксидов в качестве сорбентов для адсорбционной хроматографии является высокая чувствительность к присутствию следов воды в элюентах на основе органических растворителей. Как правило, разделение на немодифицированных неорганических оксидах проводят в нормально-фазном или прямофазном вариантах, что на практике соответствует использованию полярного сорбента и неполярного элюента. Даже небольшие содержания воды в элюентах в этом варианте существенно изменяют селективность разделения и приводят к ухудшению воспроизводимости. Менее чувствительными к влаге являются силикагели, химически модифицированные полярными органическими молекулами с функциональными амино-, нитро, амидными или нитрильными группами. Однако при закреплении органических молекул на поверхности сорбента для хроматографии возникает вопрос о возможности разделений по механизму распределительной хроматографии. [c.365]


Смотреть страницы где упоминается термин Химическое модифицирование поверхности оксида алюминия: [c.130]    [c.57]    [c.241]    [c.132]    [c.412]   
Смотреть главы в:

Химия привитых поверхностных соединений -> Химическое модифицирование поверхности оксида алюминия




ПОИСК





Смотрите так же термины и статьи:

Алюминия оксиды

Химические поверхности



© 2025 chem21.info Реклама на сайте