Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействие простейших химических частиц

    И, наконец, завершается формирование учения о стехиометрии законом простых кратных отношений, который был открыт Дальтоном. При этом Дальтон исходил из идеи о том, что химическое взаимодействие элементов сводится к соединению неделимых атомов в простейшие дискретные частицы сложных тел . [c.61]

    Взаимодействие простейших химических частиц [c.10]

    Константа скорости простой реакции прежде всего будет определяться закономерностями протекания элементарного акта. Элементарным химическим актом называется единичный акт взаимодействия или превращения частиц (молекул, радикалов, ионов, атомов и др.), в результате которого образуются новые частицы продуктов реакции или промежуточных соединений. В процессе элементарного химического акта происходит изменение расположения ядер атомов и электронной плотности в частицах, в результате чего рвутся или возникают новые химические связи. Основные типы элементарных химических актов можно разбить по их молекулярности на три группы  [c.556]


    Планком проблемы излучения абсолютно черного тела все экспериментальные работы подтверждали волновую теорию излуче- ния. Однако с 1900 г. накопившееся очень большое число экспериментальных фактов несомненно указывало на корпускулярную природу электромагнитного излучения, что не ограничивалось рассмотренными конкретными примерами. Так, Эйнштейн, а позднее Дебай разрешили проблему удельной теплоемкости твердых тел на основе квантовых положений, а Комптон так объяснил рассеяние Х-лучей электронами при их взаимодействии, как если бы оно произошло между релятивистскими бильярдными шарами. Имея в виду обилие доказательств в пользу квантовой теории, можно было бы склониться к мнению, что цикл замкнулся, и ученые опять вернутся к основным взглядам Ньютона. Но это абсолютно не так. Конечно, нельзя отрицать, что электромагнитное излучение, как уже было показано, имеет как волновой, так и корпускулярный характер. Это ставит перед нами дилемму фотон — волна или частица Эта проблема не относится к числу легко разрешимых решение ее не может быть получено при просто химическом или физическом подходе. Здесь приоткрывается новая страница естествознания. Эта проблема имеет и определенный философский характер. [c.38]

    Взаимодействие атомов, приводящее к образованию молекул простых и сложных веществ, а также кристаллов, называют химической связью. Взаимодействие атомов многообразно, поэтому многообразны и химические связи, которые часто сводят к нескольким основным типам —ковалентной, ионной, донорно-акцепторной, водородной связи и др. Однако все эти взаимодействия можно описать с позиций единой теории химической связи. Эта теория призвана объяснить, какие силы действуют между атомами, как атомы объединяются в молекулы, что обеспечивает устойчивость образовавшейся сложной частицы (то же относится к кристаллам, жидкостям и другим телам). Теория должна объяснить опытные факты, лежащие в основе клас- [c.50]

    Под ядернЫми реакциями понимается взаимодействие соответст вующих частиц (нейтронов, протонов, а-частиц и других атомных ядер) с ядрами химических элементов. Наиболее Простые ядерные реакции характеризуются следующим механизмом. Одна из бомбардирующих частиц захватывается ядром-мишенью и образуется промежуточное составное ядро с очень короткой продолжительностью жизни ( 10 7 с). Последнее испускает элементарную частицу или легкое ядро и превращается в новое ядро. [c.11]

    Весьма перспективный метод исследования механизмов элемен<-тарных химических реакций был предложен Вудвордом и Гоффманом (правила Вудворда — Гоффмана) на основе закона сохранения орбитальной симметрии [108. Сходные идеи высказывали также и другие авторы. Суть метода состоит в рассмотрении возможных энергетических состояний исходных и конечных продуктов реакции на основе теоретико-групповых и квантовомеханических представлений. Такое рассмотрение позволяет отделить те особенности механизма реакции, которые имеют геометрическое или кинематическое происхождение, от чисто динамических особенностей, зависящих от природы взаимодействия между частицами, т. е. от потенциальной энергии. Определение последних особенностей требует решения уравнения Шредингера определение первых возможно на основе предварительного сравнительно простого анализа. [c.65]


    Выбранный пример касается простой лабораторной хроматографической колонки с системой жидкость — твердая фаза, но те же процессы разделения происходят в основном и во всех прочих хроматографических системах, хотя механизм взаимодействия химических частиц с хроматографической средой бывает различным. [c.525]

    Простейшее строение имеют макротела, являющиеся разреженными газами и парами. Их можно приближенно рассматривать как совокупности химических частиц, из которых состоят эти макротела. При достаточном разрежении газа или пара можно считать, что отдельные химические частицы его взаимодействуют только при соударении, при меньших разрежениях можно рассматривать такие макротела как совокупности химических частиц, взаимодействующих в основном при соударениях, но также слабо взаимодействующих на расстояниях, близких их среднему расстоянию в данных физических условиях (определяющемуся числом частиц в единице объема). [c.142]

    Из приведенной выше классификации макротел по видам следует, что, например макротела, представляющие собой достаточно разреженные газы и пары, можно рассматривать с хорошим приближением как совокупность отдельных химических частиц, в нулевом приближении не взаимодействующих между собой. Если принять это приближение, то оператор Гамильтона для всего газа в целом распадается на сумму частей, каждая из которых зависит только от координат ядер и электронов одной химической частицы, а волновая функция для всего газа в целом может быть представлена как простое произведение волновых функций отдельных химических частиц. Волновая функция каждой частицы должна удовлетворять принципу Паули в отношении перестановки номеров любых двух электронов, входящих в одну и ту же химическую частицу. Волновая функция всего газа в целом может и не удовлетворять принципу Паули в отношении перестановки номеров электронов, относящихся к разным химическим частицам, так как в нулевом приближении мы рассматриваем разные химические частицы как абсолютно не взаимодействующие системы. [c.144]

    Физико-химический подход основан на рассмотрении процесса на микроскопическом уровне с последующим переходом к изучению его макроскопических свойств. Для простой реакции, т. е. процесса, протекающего с преодолением одного энергетического барьера, задача расчета коэффициента скорости реакции может быть разделена на две — динамическую задачу расчета сечения реакции и статистическую задачу нахождения функции распределения. В первом случае необходимо определить вероятность того, что в процессе соударения и обмена энергией взаимодействующие частицы (молекулы, атомы, радикалы, ионы и т. д.) изменяют свою химическую индивидуальность. Во втором случае нужно найти, как меняется во времени распределение частиц по различным энергетическим состояниям, и рассчитать макроскопический коэффициент скорости химической реакции в зависимости от этого распределения. [c.48]

    Посмотрим теперь, какую информацию мы хотели бы получить из экспериментального уравнения скорости. Прежде всего подход к уравнению будет различным в зависимости от целей — должен ли быть оптимизирован процесс или выяснен механизм реакции. Если в первом случае требуется просто найти аналитическую зависимость скорости от концентрации, то во втором случае уравнение скорости должно дать представление о реакции на молекулярном уровне. Это подразумевает выяснение отдельных элементарных стадий или элементарных реакций, которые происходят одновременно и последовательно внутри общей реакции. Элементарные реакции бывают реакциями первого порядка, например внутримолекулярные перегруппировки или реакции разложения, а чаще всего реакциями второго порядка, когда молекулярное взаимодействие между двумя частицами прямо приводит к продукту. Большинство химических реакций можно представить как те или иные комбинации элементарных реакций. Обычно различают следующие простые комбинации 1) параллельные реакции (конкурирующие, одновременные) 2) последовательные реакции или последовательность реакций 3) обратимые реакции. [c.12]

    Взаимодействия простейших частиц раскрывают сущность химических процессов и вместе с тем с достаточной степенью точности поддаются математическому описанию. Их можно представить системой уравнений, решение которых дает правильное направление эксперименту, дополняет и объясняет результаты опытов, уменьшает их трудоемкость. [c.14]

    На основании проведенных исследований схема возникновения калильного зажигания от нагара представляется следующим образом. Наиболее интенсивное нагарообразование наблюдается на режиме малых нагрузок. При переходе на полные нагрузки температура частиц нагара, укрепившихся на деталях камеры сгорания, а также отслоившихся и находящихся в надпоршневом пространстве, начинает повышаться вследствие увеличения теплонапряженности цикла. Температура частиц нагара непрерывно изменяется в результате теплообмена с окружающими газами. При сгорании и выпуске нагар разогревается горячими газами и температура его повышается, при впуске — частицы нагара охлаждаются свежей смесью. Но нагары не являются простыми аккумуляторами тепла, поступающего от горячих газов. Установлено, что вещество нагара при определенных температурах способно химически взаимодействовать с кислородом воздуха, выделяя тепло. Иными словами, при некоторых [c.77]


    Интерес к особым свойствам граничных слоев воды имеет давнюю историю [444]. Результаты многочисленных исследований свидетельствуют о том, что свойства этих слоев существенно отличаются от свойств объемной воды [42, 43, 415, 421, 422]. Наиболее простое описание этих различий можно выполнить с помощью представления о связанной воде [1, 64, 445]. Для фосфолипидных бислоев это означает, что одна молекула, например, лецитина связывает 20 молекул воды, из которых 2—3 связаны сильно , а остальные представляют собой промежуточный тип слабо связанной воды [446]. Очевидно, что в рамках такого упрощенного описания довольно трудно выяснить физико-химическую природу воздействия поверхности на структуру граничных слоев воды или электролита. В работах Б. В. Дерягина [42, 43, 415] сделан переход к более детальному описанию граничных слоев было высказано предположение о существовании специфического взаимодействия, существенно отличающегося от классических (электростатического и вандер-ваальсового) и возникающего в процессе сближения частиц или поверхностей в зоне перекрытия граничных слоев. [c.161]

    Химические реакции протекают между веществами, а поскольку вещества построены из атомов, молекул или ионов, то химические реакции — это взаимодействие отдельных атомов, молекул или ионов веществ. На практике (в химической промышленности, химической лаборатории) реакции проводят с макроколичествамн веществ, каждое из которых включает очень большое число простейших химических частиц (атомов, молекул, ионов). [c.38]

    Химическая связь в твердом теле с координационной структурой может быть хорошо описана с позиций ММО. Если при описании простых молекул методы ВС и МО могут быть использованы одинаково широко, то образование твердых тел нельзя интерпретировать методом ВС. Здесь наиболее очевидны преимущества ММО. В рамках этого метода химическая связь между партнерами может осуществляться не только при парноэлектронных (валентных) взаимодействиях, но и при образовании невалентных орбитальных связей. В кристаллах, образовапиых с участием таких связей, электроны делокализованы или в части системы, охватывающей несколько атомов, или во всем кристалле. Например, при образовании металлических кристаллов наблюдаются большие координационные числа (как правило, 8 и 12). В то же время количества валентных электронов в металлах явно недостаточно для образования такого числа парно-электронных связей. При этом химическая связь осуществляется за счет обслуживания электроном большого числа структурных единиц (атомов). Химическая связь такого типа называется многоцентровой связью с дефицитом электронов. Таким образом, в отличие от валентных соединений здесь нельзя выделить отдельные связи, попарно соединяющие между собой соседние атомы. Хотя атомы связаны в устойчивую систему, между ними не существует классически понимаемых химических связей. Специфика взаимодействия большого количества частиц состоит в том, что при образовании ансамбля нрн сближении частиц и их взаимном влиянии друг на друга происходит расщепление атомных орбиталей. На рис. 127 показано расщепление орбиталей щелочного металла, валентный элеткрон которого находится на rts-уровне. [c.307]

    Общая характеристика растворов. Процесс растворения—сложный физико-химический акт, а не простое распределение частиц одного вещества между частицами другого, которое в какой-то степени применимо для описания разреженных газовых смесей. В жидких и твердых растворах частищл растворителя и растворенного вещества непосредственно взаимодействуют между собой и находятся на таких коротких расстояниях, как и в химических соединениях. Взаимодействие молекул растворителя с растворяемым веществом зависит от сил разнообразной природы, за счет которых в растворе образуются устойчивые комплексные и полимерные соединения, способные существовать вне раствора,— сольваты, а в случае водных растворов — гидраты. [c.78]

    Чтобь количественно охарактеризовать взаимодействие между атомами в молекуле или кристалле, необходимо учесть взаимодействие между всеми частицами, из которых состоят атомы в молекуле или кристалле между электронами, между электронами н ядрами, а также между ядрами. Математически это чрезвычайно сложная задача и для самых простых молекул, даже если решать ее только на базе законов классической г/.еханики. Она еще больше осложняется тем, что поведение электронов в атомах, молекулах и кристаллах подчиняется законам квантовой механики. Поэтому даже в квантовой химии— области химии, изучающей химическую связь, для количественного описания молекул (в конечном итоге для расчета энергии химической связи и, следовательно, прочности соеди-1 эний) вводят целый ряд упрощений и используют самую современную вычислительную технику. [c.122]

    Однако квантовые законы не исчерпывают всех закономерностей, которым подчиняется химическая форма двюкешш материи. При помощи квантовой механики могут быть изучены лишь тс свойства веществ, иа которых не сказываются специфические закономерности, связанные с наличием сложных форм взаимодействия большого числа частиц (электронов, атомов, молекул). К вопросам, которые могут быть решены при помощи квантовой моханики, относятся, например, расчеты энергии молекулы, пространственного расположения атомов, распределения электронной плотности, вопрос о поведении молекулы во внешнем иоле, о механизме элементарного акта единичного химического превращения простых молекул и др. По мере усложиеиия химического строения молекул и появления качественно новых свойств все более важными становятся те особенности молекул, которые обусловлены именно этой сложностью и существенно зависят от взаимодействия большого числа частиц. Для изучения этих особенностей квантовой механики недостаточно. [c.27]

    Доступность поверхности катализатора для реагирующих газов играет важную роль при выборе твердого вещества, которое должно служить активным катализатором для гетерогенных газовых реакций. Чем больше для каждого данного катализатора величина новерхности, доступной для реагирующего газа, тем выше степень превращения этого газа в конечные продукты. Немногие катализаторы обладают поверхностями, характеризующимися энергетической однородностью в том смысле, что все адсорбционные центры являются равноценными и что каждая молекула адсорбата обменивается с адсорбционным центром одним и тем же количеством энергии. Если такой катализатор и может быть приготовлен, то его активность должна быть пропорциональна площади поверхности, соприкасающейся с адсорбируемым газом. Однако, как уже говорилось в главе 2, катализаторы а priori характеризуются некоторой неоднородностью новерхности и, кроме того, эта неоднородность индуцируется взаимодействием между адсорбированными частицами. Независимо от причины появления такой неоднородности результатом ее является то, что некоторые участки новерхности катализатора оказываются более активными, чем другие. В таком случае активность катализатора уже не будет просто пропорциональна величине поверхности а скорее, должна зависеть от характера распределения активности но доступной поверхности. Однако, несмотря на существование энергетически неоднородных поверхностей, имеется множество катализаторов, характеризующихся пропорциональностью между активностью и величиной поверхности, причем на долю какой-либо неоднородности приходится лишь небольшая часть всей химически активной поверхности. Одним из самых первых приложений измерений величины новерхности было предсказание отравления катализаторов. Е1сли при длительном исиользовании катализатора его активность снижается быстрее, чем величина новерхности, то можно иред-нолагать, что происходит отравление этого катализатора, а если уменьшение площади поверхности катализатора сопровождается соответственным снижением активности, то это указывает на термическую дезактивацию катализатора. Другим приложением определения величины поверхности является метод оценки эффективности носителей и промоторов. Носитель или промотор может либо увеличивать площадь поверхности, доступной для адсорбции и протекания реакции, либо повышать каталитическую активность в расчете на единицу площади поверхности. Следовательно, зная величину новерхности, можно предвидеть поведение катализатора и определить роль его поверхности в гетерогенных газофазных реакциях. Следует, однако, подчеркнуть, что часто химической активностью обладает лишь небольшая доля поверхности, определяемой с помощью физических методов. [c.160]

    Иордис, исходя из способов приготовления различных золей, указывает, что в результате химического взаимодействия эти способы приводят к образованию нерастворимых соединений, и если при этом получаются устойчивые золи, то нужно предполагать, что или продукты реакции обладают какими-то новыми и странными свойствами, или уравнения реакций являются лишь грубым выражением процесса, в действительности протекающего более сложно, и требуют поэтому соответствующих поправок. Иордис подвергает сомнению правильность обычных химических уравнений и доказывает опытом, что образующиеся осадки никогда не имеют простого химического состава, а всегда содержат примеси исходных веществ он показал, что золь 5Юг всегда содержит минимальные примеси С1 и Na, причем эти примеси не случайны и не безразличны для коллоидной системы, а напротив, удаление этих примесей диализом ведет к осаждению золя, тогда как увеличение их количества повышает устойчивость золя. Состав коллоидной частицы, таким образом, не может быть дан обычной, простой химической формулой. Частица имеет сложный состав и построена по типу химических комплексных соединений. [c.191]

    По понятиям, которых ныне придерживаются многие (гл. 1, доп. 77), определенные соединения отвечают только высшим температурам, а низшие суть евтектические смеси. Но здесь, как и во множестве других случаев (особенно в металлических сплавах), точки эти приходятся на вещества, представляющие определенный частичный (простой) состав. Поэтому, с своей стороны, я считаю, что евтектическим точкам (низшим температурам плавления) если не всегда, то во множестве случаев отвечает строгая определенность состава и простота отношений в числе частиц, как для настоящих определенных соединений. Причину этому до. жно искать в зависимости всяких физико-механических свойств от тех сил и отношений, которыми определяется химическое взаимодействие, т.-е. от массы действующих химических частиц. Если между двумя определенными соединениями, обладающими max. t, должен быть где - то состав с min. t, то его, по мне, вероятнее всего ждать при некотором простом отношении между числом частиц образующихся веществ, ибо все их свойства должны быть в связи с их частичным весом. Таков дух всех химических учений со времени укрепления понятий об атомах, частицах, периодичности элементов и пр. При изучении растворов и сплавов не должно упускать из внимания те явления, которые выступают между водою и серною кислотою. В них еще не все ясно, но многое яснее, чем в других растворах или в сплавах. А. В. Сапожников показал, что прибавка к крепкой серной кислоте уд. веса 1,842 азотной уд. веса 1,4 — 1,5 увеличивает уд. вес, напр., до 1,86. [c.530]

    По наиболее ранней теории коагуляции—химической,—разработанной более полно Дюкло (1907 г.), коагуляция золей обязана химическому взаимодействию иона-коагулятора с электролитом-стабилизатором коллоидной частицы, в результате которого образуется менее диссоциируемая, а следовательно и менее растворимая (с меньшим произведением растворимости) ионогенная группа, не способная больше удержать коллоидные частицы от слипания и выпадения в осадок. Доказательством такого взгляда служило, во-первых, то, что в коагуляте обнаруживаются и ионы-коагуляторы во-вторых, в некоторых случаях, например при коагуляции золя Ре(ОН)з солью МзгЗО , удавалось предполагаемое химическое взаимодействие выразить простыми химическими уравнениями. Однако такой взгляд мог быть обоснован лишь для ограниченного числа случаев. [c.145]

    К первому типу относятся превращения энергетически активированных химических частиц, которые в момент превращения не взаимодействуют с другими частицами газовой фазы. Эти процессы называются моно-молекулярными. Такими процессами являются внутренние перегруппировки атомов, разрыв связи, вращение группы, которое имеет место, например, при цис-транс-изомеризации, или в простейшем случае внутримолеку-лярное перераспределение энергии. [c.83]

    Начнем с простейшей из всех химических частиц - с Протон располагает одной свободной Ь - орбиталью, пространственная форма которой представляет собой полностью симметричную сферу. Поэтому для него не существует никаких пространственных ограничений для взаимодействия с каким-либо а -донором. С другой стороны, трифторид бора (ВРд) является плоской молекулой с симметрией О3 4 и имеет вакантную Рг -орбиталь, направленную вдоль оси г (С ) (рис 11, а). В этом случае стереохимия молекулы приводит к тому," что а -акцепторный центр располагается как над, так и под молекулярной плоскостью. ВГ 3 является сильным а-акцептором, кислотой Льюиса и электрофилом, поскольку в реакциях он атакует другие молекулы по месту повышенной электронной плотности. Молекула аммиака (N113) имеет структуру тригональной пирамиды [c.45]

    Если исходить из предположения, что адсорбция ионов на ртути определяется исключительно электростатическими силами, то все анионы должны изменять ход лишь восходящей ветви электрокапиллярной кривой, где поверхность ртути заряжена положительно. Напротив, влияние катионов должно локализоваться только иа кисходя1цей ветви, где они электростатически притягиваются к отрицательно заряженной поверхности ртути. В действительности, как это было найдено еще Гуи, многие анионы изменяют ход элек-трокапиллярпой кривой справа от точки максимума, а некоторые катионы влияют не только на нисходящую, но и на восходящую ветвь кривой. Такое поведение ионов нельзя объяснить действием только кулоновских сил. Оно связано с силами взаимодействия, отличными от простых электростатических сил. Такими силами, специфическими для данного рода частиц, могут быть, например, силы Ваи-дер-Ваальса или химические (валентные). Благодаря этим силам ионы в состоянии удерживаться на одноименно заряженной поверхности ртути и влиять на электрокапиллярные свойства границы металл — раствор. Точно так же нельзя на основе одних только электростатических представлений объяснить влияние неиоинзированных органических веществ на ход электрокапиллярных кривых. Дело в том, что большинство органических веигеств обладает меньшей диэлектрической постоянной, чем вода, и поэтому должны были бы изгоняться ею из двойного слоя уже при не- [c.239]

    Постулат о том, что для осуществления элементарного химического акта реагирующие молекулы (или другие частицы, нгшример атомы, радикалы, ионы) должны столкнуться, на первый взгляд совершенно очевиден. Однако дело обстоит не так просто. Утверждением о необходимости столкновения при элементарном акте полностью отвергается возможность каких-либо дальнодействий при химических реакциях. Между тем возможны случаи, когда задавшись геометрическими размерами. молекул (например, определенными по спектроскопическим или электронографическим данным), мы обнаружим, что молекулы, геометрически не сталкиваясь, кинетически в той или иной степени взаимодействуют. Следовательно, прежде чем без оговорочно принять тезис о необходимости столкновения при элементарном акте, следует уточнить те чисто геометрические (в первом приближении) требования, которые предъявляются к понятию столкновения в химической кинетике. [c.119]

    Многообразие различных модификаций кипящего слоя (см. главу V), а также физических, химических, физико-химических и физико-механических процессов, проводимых в нем, не позволяют нам подробно рассмотреть кинетику всех этих процессов. В данной монографии мы ограничимся кратким описанием лищь некоторых кинетических особенностей для тех наиболее простых случаев, когда существенные изменения претерпевает лишь одна из взаимодействующих фаз — газ или твердые частицы. Приведем также пример одного чисто физико-механического процесса — гравитационного обогащения полезных ископаемых в утяжеленной таким путем псевдожидкости. Следует учесть, что таким важным технологическим процессам, как сушка [218], обезвоживание и грануляция растворов [151, 219] в кипящем слое и некоторым другим посвящены специальные работы [16, гл. VIII 62, 221]. [c.178]

    Образование атомов из элементарных частиц, которое представляет интерес для физиков, отнюдь не является высшей стадиеи организации материи. Как мы уже упоминали, когда атомы настолько сближаются друг с другом, что внешние электроны одного атома могут взаимодействовать с другими атомами, между атомами возникают достаточно большие силы притяжения, чтобы удерживать их вместе химической связью. В простей- [c.20]

    Молекулярность простой одностадийной реакции-это число индивидуальных молекул, которые взаимодействуют в данной реакции. Чтобы указать молекулярность реакции, необходимо иметь сведения о ее механизме. Реакция, подобная протекающей между водородом и иодом, на самом деле может осуществляться в несколько отдельных стадий, каждая из которых имеет свою молекулярность. Представление о молекулярности полной реакции, осуществляемой в несколько стадий, лищено смысла. Большинство простых одностадийных реакций являются мономолеку-лярными (самопроизвольный распад) или бимолекулярными (столкновения). Подлинно тримолекулярные реакции очень редки, так как столкновения трех частиц мало вероятны. О тетрамолекулярных реакциях и реакциях более высокой молекулярности практически не приходится говорить. Реакции, которые по своей стехиометрии представляются тримоле-кулярными или еще более сложными, после тщательного изучения обычно оказываются последовательностями простых мономолекулярных и бимолекулярных стадий. Одна из интереснейших проблем химической кинетики как раз и заключается в установлении истинной последовательности реакций в каждом таком случае. [c.358]

    Химическая реакция на элементарном уровне представляет собой простейший пример столкновения и обмена энергией двух или трех компонентов. Столкновение одновременно четырех и более частиц является событием настолько маловероятным, что в тех случаях, когда для осуществления сложного процесса необходимо столкновение более чем трех частиц, реакция с гораздо большей вероятностью проходит не в одну стадию, а через ряд элементарных стадий, на каждой из которых взаимодействует не более трех частиц. В соответствии с этим реакция, в которой принимает участие одна частица, называется моно-молекулярпой, если две частицы, то — бимолекулярной, три — тримолекулярной. [c.15]

    Газы при высоких температурах. Повышение температуры прежде всего вызывает усиление всех форм теплового движения частиц. При высоких температурах энергия теплового движения частиц становится соизмеримой с энергией химической связи в молекулах, с энергией возбуждения новых электронных уровней и с энергией связи электронов в атомах и в молекулах. Поэтому при высоких температурах в газе образуются возбужденные частицы и продукты диссоциации молекул в виде свободных атомов или валентно ненасыщенных групп (радикалов), которые могут находиться в равновесии с исходными молекулами. Являясь вместе с тем очень реакционно способными, эти частицы могут вступать во взаимодействие между собой или с другими частицами, образуя новые сочетания. То же относится к продуктам ионизации. Наряду с этим при высоких температурах в газах могут содержаться пары веп1еств, практически не испаряющихся при обычных температурах, а также частицы, образующиеся при термическом разложении этих веществ. В результате при высоких температурах в газах содержатся (при равновесном состоянии системы) новые, часто совершенно непривычные виды частиц, отвечающие валентным состояниям элементов, нехарактерным или неизвестным для них при обычных температурах. Эти частицы могут быть или более простыми, чем отвечающие им. частицы при обычных температурах (например, ОН, 510, 50), или, наоборот, более сложными (Сз, Сд, Ыаг, Сев, Мда, Ыа(0Н)С1, ВагОз, М05О15 и др.). [c.117]

    Механизм медленной коагуляции. При наличии энергетического барьера между частицами уменьшается возможность их столкновения. Смолуховский рассмотрел этот случаи путем формального введения параметра а — доли броуновских столкновений, вызываюш,их слипание частиц. В результате время коагуляции т увеличивается в 1/а раз. Однако этот формализм не раскрывает связь а с энергией взаимодействия частиц. Следует отметить, что эта зависимость не выражается, как в химической кинетике, простым коэффициентом Максвелла — Больцмана а =ехр (—AUlkT), где Ai/"—потенциальный энергетический барьер (Лоуренс и Майлс, 1954), так как концеитрация частиц в активирован [ ом состоянии является также функцией потока частиц. Другими словами, это есть случай диффузии через относительно высокий потенциальный энергетический барьер. [c.108]

    Вещества, взаимодействующие в процессах нитрозирования, дна ютпрования и азосочетаиия, перерабатываются в виде подвижных водных растворов или водных суспензий, содержащих незначительное количество взвешенных твердых частиц. В соответствии с этим для проведения указанных процессов могут быть использованы простые аппараты типов 1Ув и Ув, представленные на 1ис. 1 (стр. 17). Поскольку реакционная масса по консистенции является достаточно подвижной жидкостью или легкой суспензией, химический процесс может протекать удовлетворительно и без иитенсивиого размен1ивания. Размешивание лопастными меша. 1ка,ми, делающими 30—60 об/мин., вполне достаточно в процессах нитрозирования, диазотирования и азосочетания. [c.301]

    Коагуляционные контакты. В коагуляционном контакте сцепление частиц ограничивается простым их соприкосновением — непосредственным или через остаточную пленку дисперсионной среды — с учетом преимущественно дальнодействующих (вандерваальсовых) сил такой контакт в принципе механически обратим. Оценим силу и энергию сцепления в таком контакте между двумя одинаковыми сферическими частицами в зависимости от геометрии системы (радиус г, зазор /г г) и физико-химических условий на границе фаз. Как было показано ранее, дисперсионная компонента свободной энергии взаимодействия (энергия притяжения на 1 см плоскопараллельных частиц 1) в среде 2 составляет по модулю [c.303]


Смотреть страницы где упоминается термин Взаимодействие простейших химических частиц: [c.181]    [c.54]    [c.252]    [c.37]    [c.11]    [c.181]    [c.177]   
Смотреть главы в:

Управление реакциями нефтехимического синтеза Издание 2 -> Взаимодействие простейших химических частиц




ПОИСК





Смотрите так же термины и статьи:

Частицы взаимодействие



© 2024 chem21.info Реклама на сайте