Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография определение жидкостно-адсорбционная

    Разделение нефтепродукта на группы методом жидкостной адсорбционной хроматографии на силикагеле дает некоторое представление о химической природе сырья. С помощью этого способа решаются главным образом две задачи аналитическое определение группового состава как некоторого показателя качества и препаративное разделение на группы с целью дальнейшего, более глубокого, изучения состава нефтепродукта различными физико-химическими и инструментальными методами. [c.37]


    В данной работе рассматриваются преимущественно вопросы, связанные с аналитическим определением группового состава высококипящих и остаточных нефтепродуктов. Необходимость серьёзного улучшения аппаратурного оформления процесса жидкостно-адсорбционной хроматографии нефтепродуктов и повышение эффективности процесса хроматографического разделения очевидны. Предложенный нами жидкостной хроматограф описан в работе [2]. Можно считать, что главным препятствием для автоматизации хроматографического разделения тяжелых нефтепродуктов остается способ элюирования из-за сложности последовательной подачи в хроматографическую колонку большого числа растворителей различного состава и способ идентификации хроматографических групп. [c.5]

    Обработку нефтей водными растворами реагентов проводили по следующей методике 50 мл отбензиненной нефти и 50 мл водного раствора реагента перемешивали в течение 24 ч при комнатной температуре. Затем воду отделяли и определяли групповой химический состав нефтей методом жидкостной адсорбционной хроматографии с градиентны.м элюированием [102]. Этот метод позволяет определять групповой химический состав тяжелых нефтепродуктов с одновременным определением асфальтенов. Полученные экспериментальные данные приведены в табл.34-35. [c.129]

    В 1903—1906 гг. русский ученый-ботаник М. С. Цвет после множества экспериментов разделил сложную смесь растительных пигментов из листьев растений при пропускании ее петролейно-эфирного раствора через вертикальную стеклянную колонку, заполненную порошкообразным карбонатом кальция. При этом возник ряд окрашенных зон, по числу которых можно было судить о сложности состава анализируемой смеси. Пропуская через колонку различные растворители (полярные, неполярные), оказалось возможным регулировать степень распределения зон по длине колонки сдвигать или раздвигать их, тем самым способствуя повышению точности последующего качественного и количественного определения. Так была создана жидкостная адсорбционная хроматография .  [c.5]

    История трех видов хроматографии — газовой, жидкостной адсорбционной и ионообменной — оказалась очень похожей. Эти методы проходят одни и те же этапы развития, как бы заимствуя опыт друг у друга. Поэтому полезно вспомнить ход становления первых двух, более сформировавшихся, направлений хроматографического анализа, а затем и историю ионообменной и ионной хроматографии. В сущности ионная хроматография является современным автоматизированным вариантом ионообменной хроматографии, но с принципиальным отличием это уже не только метод разделения, но и метод определения. Точно так же, как и современная газовая и жидкостная адсорбционная хроматография. ( [c.5]


    В отличие от колоночной жидкостно-адсорбционной хроматографии в тонкослойной хроматографии не получают определенного объема элюата, содержащего компоненты анализируемых веществ, а заканчивают хроматографический процесс разделения, оставляя разделенные вещества на слое адсорбента. [c.128]

    Рассмотренный материал дает возможность поставить и обратную задачу по удерживаемым объемам охарактеризовать проявляющиеся межмолекулярные взаимодействия, причем не только с адсорбентом и с элюентом на поверхности адсорбента, но и в объеме элюента. Особое значение имеет установление неизвестных параметров структуры сложных молекул на основании измерений удерживаемых объемов для нулевой пробы (констант Генри для адсорбции из растворов, см. лекцию 14), т. е. использование жидкостной хроматографии для суждения о структуре молекул дозируемых веществ. Хроматоскопические задачи на основе констант Генри для адсорбции из растворов, определенных методом жидкостной адсорбционной хроматографии, встречают, конечно, значительно большие затруднения, чем при использовании констант Генри в газоадсорбционной хроматографии (см. лекцию 10). Эти затруднения связаны с тем, что молекулярно-статистическая теория адсорбции даже из разбавленных растворов еще не разработана. Однако из приведенных в лекциях 16 и 17 экспериментальных данных видно, что существуют определенные эмпирические связи между структурой разделяемых методом жидкостной хроматографии молекул и характеристиками их удерживания. Здесь необходимо прежде всего накопить надежные экспериментальные данные для молекул разной структуры в определенных системах элюент — адсорбент. В конце лекции 10 было отмечено, что даже качественный хроматоскопический анализ может представлять большой интерес. В случае же жидкостной хроматографии представляется возможность распространить его на большое количество сложных по структуре и поэтому мало изученных молекул. [c.332]

    Вытеснительный метод обладает тем преимуществом, что в этом методе процедура анализа сводится к определению длин и высот ступенек. Кроме того, в отличие от проявительного метода, компоненты смеси не разбавляются растворителем, вследствие чего их концентрация не уменьшается при хроматографировании. Вытеснительный метод нашел себе широкое применение в жидкостно-адсорбционной и ионообменной хроматографии. [c.11]

    К сожалению, в жидкостной адсорбционной хроматографии все еще отсутствуют какие-либо определенные и теоретически обоснованные критерии для выбора оптимальных размеров и форм хроматографических колонок. Поэтому такой выбор обычно производится опытным путем. [c.30]

    При использовании набивных колонок даже анализ изомеров углеводородов g представлял определенные трудности, а капиллярные колонки с неполярной неподвижной фазой — скваланом — позволяют анализировать все изомеры не только гексана, но и гептана, октана. Применение капиллярных колонок позволило провести почти полную идентификацию компонентов бензиновых фракций нефтей, перегоняющихся до 175°С. Присутствующие в этих фракциях алкилбензолы можно анализировать после предварительного их выделения жидкостной адсорбционной хроматографией, экстракцией или без предва- [c.125]

    В сочетании с жидкостной адсорбционной хроматографией в каждой фракции ароматических углеводородов можно определить содержание не более семи гомологических серий углеводородов, характеризующихся числом % в общей формуле Этот способ можно использовать и для определения содержания ароматических углеводородов в высококипящих фракциях продуктов ожижения угля. [c.14]

    Одна из глав посвящена методам разделения компонентов нефтей (ректификация, термодиффузия, жидкостно-адсорбционная хроматография, адсорбция на цеолитах, комплексообразование с карбамидом и тиокарбамидом и др.), эффективность которых предопределяет успешное применение методов анализа при последующем исследовании отдельных нефтяных фракций. Широко представлены методы исследования химического состава нефтей, включая как углеводородные, так и гетероатомные компоненты (различные варианты определения группового углеводородного и структурно-группового состава нефтяных фракций). [c.4]

    Рост масштабов производства нефтехимических продуктов и,. в частности ПАВ, обусловливает необходимость интенсивной разработки чувствительных и точных методов анализа и контроля вод, содержащих кроме углеводородов самые разнообразные классы других органических соединений. В связи с этим возрастает роль не только селективных методов прямого определения не чувствительных к сопутствующим примесям других органических и неорганических веществ, но и роль эффективных методов разделения на классы веществ в воде, количественного выделения из воды, дальнейшего их концентрирования, разделения на группы и компоненты. Перспективными для этих целей являются методы ионообменной, жидкостной адсорбционной (на неполярных адсорбентах), тонкослойной и газожидкостной хроматографии. [c.272]


    Жидкостную адсорбционную хроматографию на активном силикагеле применяют для определения активной (сульфонатной) части в нейтральных сульфонатах калия [556] и натрия (АЗТМ Д 2548—69). [c.324]

    Наибольшее распространение для анализа тяжелых фракций и деасфаль-тированных остаточных нефтепродуктов в нашей стране получила методика жидкостно-адсорбционной хроматографии, разработанная во ВНИИ НП [15] и усовершенствованная затем в СоюздорНИИ [22], и методика определения потенциального содержания масел в нефти [158]. Эти методики имеют очень много общего и различаются главным образом размером образца (от 3 до 100 г), соответственно размером хроматографической колонки и соотношением адсорбент проба (от 10 1 до 50 1). Суть методик сводится к следующему. [c.112]

    Для углубленного исследования состава товарных и отработанных (окисленных) пластичных смазок предложены схелш многоступенчатого препаративного разделения и анализа [541, 565—. 570 ], в основу которых входят препаративные методы — ионообменная и жидкостная адсорбционная хроматография, экстракция, а также аналитические методы, газо-жидкостной и тонкослойной хроматографии, ИК-спектроскопия. Сначала проводят качественный. анализ пластичных смазок неизвестного состава (см. разд. III.2.1). При обнаружении в пластичной смазке солей уксусной и других водорастворимых низших жирных кислот разделение и анализ осуществляют по схеме 4, предусматривающей выделение и количественное определение этих кислот. Методически проще проводить исследование пластичных смазок по схеме 5, которая в виде различных модификаций жидкостного хроматографирования на активном и неактивном силикагелях применяется также для определения [c.332]

    Тимербаев А. Р. Обоснование, И выбор условий разделения и определения металлов в виде хелатов методом жидкостной адсорбционной хроматографии после предварительного экстракционного концентрирования Дис.. .. канд. хим. наук. М. ГЕОХИ АН СССР, 1985. 284 с. [c.94]

    При исследованиях группового углеводородного состава бензиновых фракций советских нефтей по единой унифицированной методике использовался так называемый комбинированный способ [145, 146]. При этом определяют критические температуры растворения (КТР) исходных и деароматизированных фракций в анилине. Арены удаляют жидкостной адсорбционной хроматографией -на силикагеле. КТР алканов, циклоалканов и аренов в анилине существенно различаются, на чем и основано определение содержания этих групп углеводородов в стандартных бензиновых фракциях н. к.— 60, 60—95, 95—122, 122—150 и 150—200 С. [c.127]

    Аффиная хроматография является самостоятельной областью жидкостно-адсорбционной хроматографии, выделяемой по специфическому механизму взаимодействия разделяемых веществ с сорбентом. Метод основан на характерной особенности биологически активньгх веществ селективно и обратимо связывать определенные вещества, называемые аффинными лигандами или аффиантами. Таким образом, ферменты связывают соответствующие ингибиторы, антитела — антигены, гормоны — их рецепторы и т.п. Если по аналогии с обращенными фазами приготовить сорбенты с привитыми аффинными лигандами, появляется возможность селективного хроматографического выделения близких по свойствам биологически активных соединений и их разделения между собой. Наиболее часто применяемые аффинные лиганды приведены в табл. 3.65. [c.201]

    Разнообразие примесей, присутствующих в этилене, привело к необходимости использовать для их определения методы адсорбционной и газо-жидкостной хроматографии. [c.186]

    Методы хроматографии основаны на различной сорбируемости (и растворимости) химических соединений, составляющих топливо, и на обратимости процесса сорбции. Имеется несколько вариантов этого метода, описанных в литературе [48 — 53]. Для определения химического состава топлив наиболее широко применяют газожидкостную хроматографию [7, 49, 53] и адсорбционный анализ (жидкостно-адсорбционную хроматографию) [48, 52—54]. [c.214]

    Хроматографические колонки. В жидкостной адсорбционной хроматографии все еще отсутствуют какие-либо определенные и теоретически обоснованные критерии для. шбора оптимальных размеров и форм хроматографических колонок, которые чаще всего подбираются опытным пугек, В лабораторной практике применяют колонки цилиндрической формы. Высота / их в зависимости от поставленной [c.41]

    Недостатки этого метода в части определения группового состава мальтенр1В исключают линейный вариант жидкостно-адсорбционной хроматографии, при котором разделение пробы на компоненты проводится в условиях, аналогичных условиям газо-адсор0ционной хроматографии с аналогичным методом детектирования и записи Хроматограмм, , [c.81]

    Это позволило осуществить принципиально новый подход к методу определения группового состава мальтенов, давший возможность изготовить жидкостно-адсорбционный хроматограф и проводить анализ в течелие 30—40 мин. с разделением мальтенов на 3 группы парафино-нафте-ной е, ароматические и смо.ры. Принципиальная схема изготовленного в БашНИИ НП полуавтоматического жидкостноадсорбционного анализатора лредставлена на рис. 1. Анализатор состоит нз следующих основных йчоков  [c.82]

    Жидкостная адсорбционная хроматография (ЖАХ) в последние десятилетия играла главную роль как в разделении нефтепродуктов на группы для последующего анализа, так и в рутинном количественном определении химического состава нефтепродуктов. Успехи ЖАХ в разделении нефтепродуктов на группы, в основном соответствующие определенным классам соединений, открьши большие возможности для прямой качественной и количественной характеристики нефтепродуктов взамен использовавшихся ранее косвенных показателей (анилиновые точки, температура за-стьшания, вязкость и т. п.), а простота оборудования и доступность реагентов обеспечили широкое применение этого вида хроматографии в анализе нефтепродуктов. [c.11]

    Полученные в результате жидкостного адсорбционно-хроматографического разделения с различным выходом 10 фракций анализируют методом тонкослойной хроматографии. Силикагель G наносят на пластинки, как описано в разд. П.2.1.2.1. Слой делят на 10 полос шириной 17 мм и отмечают высоту подъема элюента (150 мм). Для нанесения на стартовую линию пластинки пробы готовят в указанных выше колбах, растворяя в определенных объемах подогретого до 40—50 °С метанола (концентрация около 50 мкг вещества в 5 мкл). На стартовую линию каждой из 10 вертикальных полос (i6 мм от нижнего края) наносят по 5 мкл раствора, метанол удаляют потоком холодного воздуха (в течение 1 мин) и пластинку вносят в камеру с налитым на дно элюентом (смесь бутанон-2 — вода). Обычно фронт элюента в течение 20 мин поднимается до метки (150 мм). После этого пластинку сушат теплым воздухом и обрызгивают модифицированным реактивом Драгендорфа. Следует OTMeiHTb, что этот реактив не окрашивает оксиэтилированные соединения с молекулярной массой менее 200 и, в частности, оксиэтилированные алкилфенолы с 3 оксиэтильными группами. [c.237]

    Для промышленного контроля на стадиях производства моющих и диспергирующих присадок применяют более быстрые прямые методы анализа — двухфазное титрование [551 ], тонкослойную [552—555] и жидкостную адсорбционную хроматографию. Для количественных определений более надежными являются метод двухфазного титройания и метод жидкостной хроматографии. [c.324]

    Высокоэффективную жидкостную хроматографию с успехом применяли для анализа масел и других высококипящих и нелетучих продуктов, а также для выделения отдельных фракций с последующим исследованием их другими, в основном спектральными, методами [45, 170--I75j, Наряду с определением группового химического состава и полным разделением нефтепродуктов на фракции [176, 177] жидкостную адсорбционную хроматографию широко используют для выделения и разделения отдельных групп или классов соединений, например, для разделения на ароматическую и неароматическую фракции, вьщеления насыщенных соединений [179], а с сорбентами, модифицированными полярными соединениями, - для вьщеления олефиновых углеводородов [180, 181]. Методом жидкостной хроматографии можно выделить, разделить на подклассы, определить малые содержания ароматических углеводородов, смол и асфальтенов [182-184] в нефтепродуктах. Ионообменную и координационную хроматографию с успехом применяют для вьщеления и разделения азотистых и других полярных соединений [185, 186], содержащихся в нефтепродуктах. Жидкостную хроматографию, в основном жидкостноадсорбционную, а в ряде случаев и в сочетании с ионообменной и координационной, широко используют для разделения битумов и более легких нефтепродуктов на ряд фракций углеводородов и полярных соединений с последующим анализом этих фракций спектральными и физико-химическими методами [142, 174, 187-189]. Для достижения разделения на более узкие фракции жидкостную хроматографию обычно сочетают с другими методами разделения, такими, как экстракция, осаждение и др. [c.120]

    Основным методом оценки фракций алкилсалициловых кислот, Еспользуемых для получения алкилсалицилатных присадок MA K, -АСК и АСЕ к смазочным маслам, в настоящее время является определение кислотных чисел фракций этих кислот в виде их натриевых олей [558] или в свободном виде по ГОСТ 11362—6,5. Жидкостная адсорбционная хроматография на активном силикагеле позволяет определить во фракции алкилсалициловых кислот (после разложения их натриевых солей) содержание не вошедших в реакцию карбокси-лирования групп парафино-олефиновых углеводородов, вторичных алкилфенолов и алкилсалициловых кислот [559]. Установлено, что, изменив условия жидкостной адсорбционной хроматографии, гможно во фракциях алкилсалициловых кислот в виде натриевых солей определить группы алкилсалициловых кислот. Причем не вошедшие в реакцию карбоксилирования алкилфенолы выходят из слоя силикагеля двумя фракциями в виде алкилфенолятов натрия >в смеси с парафино-олефиновыми углеводородами и алкилфенолов, с алкилфениловыми эфирами. Практически полное протекание реакции замещения катионов натрия, содержащихся в исходной пробе алкилсалицилатов, на ион водорода происходит за счет наличия необходимого числа парных ОН-групп, связанных с атомом кремния на поверхности силикагеля. Активной в этом обмене является одна из парных ОН-групп, одиночные ОН-группы неактивны [560]. [c.330]

    Зизин и Иванова [155] использовали метод линейной жидкостно-адсорбционной хроматографии для определения группового химического состава нефтяных фракций. В качестве сорбента использовщхи оксид алюминия, емкость линейного участка изотермы сорбции которого была увеличена предварительной сорбцией на его поверхности воды. Элюентом служил изооктан, а детектором - интерферометр ИТР-2, одна из кювет которого была сделана, проточной. Эта система позволяла разделять нефтепродукты на насыщенные, моно- и бициклические ароматические углеводороды. Подобный метод [156] использовали и для определения группового состава продуктов газового конденсата с т. кип. 70-210 °С. Разделение проводили на модифицированной водой Al Oj с детектором по диэлектрической проницаемости. В качестве подвижной фазы использовали -гексан. [c.111]

    Одной из важнейших молекулярных характеристик полиме-ризационноспособных олигомеров является распределение по типу функциональности (РТФ), характеризующее содержание в олигомере молекул с различным числом функциональных групп. Наряду с ММР РТФ олигомеров играет определяющую роль в формировании комплекса физико-механических свойств вул-канизатов, полученных на их основе [229]. РТФ олигомеров определяют методом жидкостной адсорбционной хроматографии. Определение основано иа различной адсорбируемости олигомерных молекул разной функциональности. Разделение обычно проводят на кремнеземных адсорбентах (силикагель, силохром) в элюенте постоянной или переменной полярности. Теоретические вопросы хроматографического разделения олигомеров по функциональности подробно рассмотрено в работах [236, 237]. [c.234]

    При изучении химического состава легких и средних дистиллятных фракций нефти, состоящих главным образом из углеводородов и иногда из сернистых соединений, изучаемый продукт обычно разделяют методом адсорбционной хроматографии на узкие фракции, в основном соответствующие определенным классам углеводородов. Симический состав узких фракций затем исследуют с помощью масс-спекгромирш, газовой хроматографии, УФч пектрофотоме 1рии. Приемы жидкостно-адсорбционной хроматографии, используемые для этой цели, аналогичны описанным в предьщущем разделе и особых затруднений не вызьшают. Возможный состав групп при использовании тех или иных адсорбентов и элюентов на основании изучения поведения модельных соединений и результатов исследования выделенных хроматографических групп также подробно о()суж-ден в предыдущих разделах этой главы и в гл. 2. Поэтому мы здесь не будем останавливаться на схемах разделения легких и средних фракций и перейдем к рассмотрению более сложной задачи — применению жидкостной [c.120]

    Ддя вьщеления азотистых соединений нефть (или нефтепродукт) разделяется методом жидкостно-адсорбционной хроматографии на свежеактивированном силикагеле [199]. н-Пентаном элюируется основная часть неад-сорбируемых углеводородов, а смесью бензол метанол (1 1) вытесняется остальной продукт. Азотистые соединения выделяются из бензол-метаноль-ного элюата экстракцией и анализируются методами ИК-, УФ- масс-спектрометрии, флюоресцентного и фосфоресцентного анализа. Как уже отмечалось, схема разделения USBM - API наиболее исчерпывающая, она дает возможность получить узкие фракции с определенными свойствами. Однако разделение по этой схеме длительно, трудоемко, требует тщательной работы, чтобы избежать потерь и изменения химического состава разделяемых продуктов за счет необратимой адсорбции или конверсии реакционно- [c.131]

    Некоторые примеры определений изотерм адсорбции из бинарных и тройных растворов, а также констант равновесия и коэффициентов распределения раствор — адсорбент приведены в обзоре [3[, а соотношения между характеристиками разделения в газовой и жидкостной адсорбционной хроматографии и многочисленные Н2 имеры практических разделений л1етодом жидкостной хроматограф11н — в обзоре [63]. [c.57]

    Варианты газовой хроматографии — газо-жидкостная и газоадсорбционная хроматографии — имеТют свои преимущества и недостатки, поэтому выбор наиболее эффективного способа анализа в каждом случае определяется характером конкретной задачи. Так, в начальный период развития газовой хроматографии анализировали только газы и легколетучие жидкости на колонках с сильными адсорбентами. Переход к газо-жидкостной хроматографии способствовал уменьшению коэффициента распределения Г для более тяжелых. сорбатов, в результате чего появилась возможность анализировать их хроматографическим методом. Использование неподвижных жидкостей самой разнообразной химической природы сделало газожидкостную хроматографию универсальным методом, позволяющим осуществлять разделение на основе различных видов физико-химических взаимодействий между сорбатами и растворителями. Кроме того, линейность изотерм растворения обеспечивала получение практически симметричных пиков сорбатов (при правильном подборе условий процесса). Однако существенные ограничения, связанные с летучестью неподвижных жидкостей, не позволяли проводить высокотемпературные процессы разделения высококипящих веществ ни в аналитическом, ни в препаративном вариантах. Поэтому дальнейшее развитие газо-адсорбционной хроматографии с применением однороднопористых адсорбентов различной химической природы было необходимо для обеспечения дальнейших успехов газовой хроматографии как метода анализа и исследования высококипящих соединений. Кроме того, используя высокочувствительные детекторы для определения микропримесей, можно не опасаться неблагоприятного влияния испарения неподвижной фазы на характеристики детектора. [c.33]


Смотреть страницы где упоминается термин Хроматография определение жидкостно-адсорбционная: [c.41]    [c.88]    [c.89]    [c.307]    [c.83]    [c.158]    [c.61]    [c.2]    [c.2]    [c.131]    [c.377]   
Курс газовой хроматографии Издание 2 (1974) -- [ c.31 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбционная хроматографи

Жидкостная хроматография хроматографы

Хроматография адсорбционная

Хроматография жидкостная

Хроматография жидкостно-жидкостная

Хроматография определение

Хроматография определение адсорбционная

Хроматография определение жидкостная

Хроматография определение жидкостно-жидкостная

Хроматографы жидкостные



© 2025 chem21.info Реклама на сайте