Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюмосиликаты как образование карбоний-иона

    Из данных табл. 11.1 видно, что общая глубина превращения на катализаторе N 8 + АЬОз + 8102, обладающем умеренной гидрирующей и высо кой кислотной активностью, значительно больше, чем на алюмосиликате, не обладающем гидрирующей-дегидрирующей активностью, и на катализаторе N1 + А Оз + 8Юг, имеющем высокую гидрирующую и низкую кислотную активность. Это объясняется образованием на гидрирующих-дегидрирующих активных центрах олефинов (в малой концентрации), легко инициирующих образование карбоний-ионов гид-рирующие-дегидрирующие активные центры предотвращают также закоксовывание соседних кислотных центров. Малая скорость крекинга на катализаторе с высокой гидрирующей активностью помимо низкой кислотной активности его, вероятно, объясняется насыщением карбоний-ионов при реакциях типа , зависимость соотношения [c.277]


    Таким образом, мы имеем дело с тремя важнейшими низкотемпературными реакциями (дегидрирование и др.), которые, по-видимому, специфичны для радиационных процессов это сочетание дополняется реакцией, направление и интенсивность Которой определяются присутствием катализатора. В случае платины это будет реакция гидрирования, которая при обычных температурах протекает по радикальному или молекулярному механизму, в случае алюмосиликата — реакция изомеризации, которую обычно считают процессом, протекаюш им по ионному механизму, т. е. через промежуточное образование карбоний-ионов. [c.155]

    Реакции крекинга катализируются твердыми кислотами, которыми являются алюмосиликаты, и протекают с образованием карбоний-ионов в качестве промежуточных частиц. [c.836]

    Изучение каталитического крекинга углеводородов на цеолитах НаХ и СаХ и аморфном алюмосиликате показало, что цеолиты более активны, чем алюмосиликаты, при крекинге н-декана и н-гек-сана при температурах 470 ° С и 500 °С, однако 3-метилпентан и олефины на алюмосиликатах крекируются легче, чем на цеолитах. Каталитическая активность цеолитов обусловлена так называемыми кислотными центрами. На этих центрах происходит образование карбоний-ионов, которые могут участвовать в следующих реакциях изомеризации двойной связи, скелетной изомеризации, полимеризации с получением олефинов большого молекулярного веса и алкилирования ароматических углеводородов. [c.59]

    Сильные кислоты способны отдавать протоны реагентам и принимать их обратно. К этому классу относятся обычные кислоты, галоиды алюминия, три< орид бора. Аналогичным механизмом каталитического воздействия обладают такие катализаторы, как алюмосиликаты, гамма-окись алюминия, магнийсили-каты, цирконийсиликат и подобные соединения, хотя вопрос о кислотном характере указанных соединений является спорным. Эти реакции происходят с образованием карбоний-ионного комплекса, возникающего путем перехода протона от катализатора к свободной электронной паре в органическом реагенте. В зависимости от условий реакции карбоний-ионный комплекс может взаимодействовать по реакциям алкилирования, крекинга, циклизации, перераспределения водорода, изомеризации, полимеризации и др. [c.312]

    По-видимому, изомеризация протекает по ионному механизму, т. е. через промежуточное образование карбоний-иона. Насыщенные углеводороды в присутствии алюмосиликата претерпевают ограниченную изомеризацию (35, 41 ]. Как уже указывалось выше, при достаточно жестких условиях в присутствии твердых кислотных катализаторов алкены подвергаются значительной скелетной изомеризации. Именно эти условия применяют и при гидроизомеризации. Поэтому роль металла скорее всего заключается в дегидрировании алкена, который соединяется затем с протоном катализатора, образуя карбоний-ион. [c.100]


    Участие активных центров цеолитов в образовании карбо-ниевых ионов. Ввиду того, что большинство практически важных каталитических процессов с участием кристаллических и аморфных алюмосиликатных катализаторов протекает по карбоний-ионному механизму, ряд спектрофотометрических работ был посвящен обнаружению карбониевых ионов на поверхности алюмосиликатов и определению природы кислотных центров, вызывающих образование карбониевых ионов (рис. 1). [c.157]

    При каталитическом крекинге донором водорода является Н-ион алюмосиликата (условно алюмосиликат обозначается через Н А ), который с олефинами начинает цепную ионную реакцию с образованием иона карбония. Например, крекинг диизобутилена можно. представить таким образом  [c.324]

    Крекинг может протекать в присутствии катализаторов алюмосиликата (при 450—520°С) или хлористого алюминия. Каталитический крекинг начинается с отщепления от парафина водорода (в виде гидрид-иона, Н-) с образованием карбкатиона, который распадается затем на непредельное соединение и другой карбоние-вый ион, но с меньшим числом углеродных атомов  [c.58]

    Алюмосиликаты проявляют свойства сильных кислот Бренстеда, устойчивых вплоть до высоких температур и способных катализировать крекинг углеводородов, причем механизм катализа предусматривает образование ионов карбония. Однако дегидратированная окись алюминия обладает кислотными центрами по Льюису, которые, вероятно, играют важную роль в ряде каталитических реакций, например при дегидратации, изомеризации и ароматизации. [c.305]

    Спектры ДФЭ, хемосорбированного на алюмосиликате, чувствительны к происхождению воды в катализаторе. Уэбб нашел только полосу при 4230 А, обусловленную ионом карбония, когда ДФЭ (высушенный над ЫаН) хемосорбировался на высушенном катализаторе (кривая А, рис. 37). Хемосорбция на гидратированном образце давала спектр (кривая В), в котором преобладала длинноволновая полоса. При промежуточных содержаниях воды появлялись обе полосы. Уэбб интерпретировал эти результаты таким образом, что адсорбированная форма, ответственная за длинноволновую полосу, является я-комплексом (или комплексом с переносом заряда) между олефином и поверхностными гидроксильными группами, образованными хемосорбированной водой. [c.79]

    Несмотря на то что образование катион-радикала при хемосорбции углеводородов до сих пор не рассматривалось в литературе по катализу, природа, реакции и механизм образования таких катион-радикалов должны иметь большое значение для объяснения механизмов каталитических реакций, особенно в связи с тем, что Уэбб [20] при адсорбции бутена-2 на алюмосиликате нашел спектральное доказательство образования структур, отличных от иона карбония. В настоящее время нельзя выяснить ни роль катион-радикалов в кислотном катализе, ни химическую природу электрофильных мест поверхности, принимающих участие в их образовании. [c.85]

    Согласно представлениям других исследователей, каталитически активным центром алюмосиликатов является координационно ненасыщенный атом алюминия, замещающий кремний в решетке силиката. Образование ионов карбония, согласно этой гипотезе, представляется схемой [c.31]

    При этом образование ионов карбония можно объяснить апротонной (льюисовской) кислотностью, проявляемой серной кислотой или алюмосиликатом. [c.124]

    Необходимы, однако, дальнейшие исследования изотопного обмена в соединениях другого типа на окислах и других неметаллических катализаторах. Выявление закономерностей их действия может оказаться недостаточно полным при использовании модельных реакций обмена водорода с дейтерием, так как имеются некоторые указания на неэффективность в ней катализаторов, способствующих образованию промежуточных соединений ионного тина. В частности, было найдено, что некоторые цеолиты типа X, содержащие катионы различных металлов, более активны в реакции изотопного обмена пропилена с тяжелой водой, где принимается карбоний-ионный или аллильный механизм, чем в реакции обмена водорода с дейтерием [64]. Поэтому для исследования реакций, протекающих по ионному механизму, могут потребоваться более удачные модельные реакции, чем изотопный обмен водорода с дейтерием. Некоторую ценность может представлять изучение реакции изотопного обмена в л -ксилоле, которая позволяет выяснить, радикальные или ионные промежуточные соединения образуются на поверхности катализатора. Эта реакция исследовалась на ряде металлов [65, 66], на цеолите X с катионами никеля [67], на рутиле [60], на Y-AI2O3 и алюмосиликате [68]. На металлических катализаторах, способствующих образованию радикальных промежуточных соединений, обмениваются преимущественно атомы водорода в боковых группах, но если катализатор благоприятствует образованию промежуточных соединений ионного типа, то обмен в кольце происходит быстрее, чем в боковых группах, [c.16]


    Некоторое время в качестве катализатора полимеризации бутиленов использовали серную кислоту. Полимеризующее действие оказывают также фтористоводородная кислота, фтористый бор, алюмосиликаты, хлористый алюминий. Установлено, что реакции полимеризации на кислотных катализаторах протекают по карбо-ний-ионному механизму . Так, в результате присоединения одного протона к молекуле пропилена образуетс 1 карбоний-ион он присоединяет новую молекулу пропилена с образованием карбоний-иона гексена, который затем стабилизируется в соответствующий олефиновый углеводород. [c.321]

    Рез льтаты проведенного исследования и вытекающие из него выводы совпадают с данными других работ, посвященных снижению температуры текучести [1—4], которые отчетливо показывают важную роль кислотности носителя. В тех случаях, когда эта кислотность достигается путем добавления кремнезема к окиси алюминия, обнаружено, что наиболее благоприятное влияние кремнезем оказывает при количестве его в пределах 10—40% от веса окиси алюминия. Подобное содержание кремнезема вообще требуется для протекани.ч 113-бирательного деструктивного гидрирования, т. е. получения максимального возможного выхода жидких продуктов [5]. Снижение температуры застывания, достигаемое в результате мягкого гидрокрекинга, сопровождаемого изомеризацией, по-видимому, обусловлено кислотностью носителя катализатора, которая способствует образованию карбоний-ионов. Последние активно участвуют как промежуточный продукт в многочисленных реакциях, в том числе в реакциях крекинга и изомеризации. Итак, доказано, что применение одной только окиси алюминия в качестве носителя катализатора, не позволяет достигнуть желаемых результатов. В заключение следует отметить, что кислотность, возникающая вследствие присутствия окиси алюминия и обусловленная образованием кислоты типа Льюиса [6], оказывается недостаточной. Кислотность, существующая в алюмосиликате состава 15 85 типа применяемого как промышленный катализатор крекинГа, слишком велика реакция сопровождается чрезмерно большим образованием газа и бензина. В этом случае кислотные центры представляют собой, главным образом, кислоты типа Брен-стеда 7]. Действительно, было показано, что носитель, содержащий 17,5% окиси алюминия и 82,5% двуокиси кремния, является кислотой Бренстеда [7], отличающейся максимальной кислотностью. Наоборот, алюмосиликаты с более низким содержанием кремнезема обладают меньшей кислотностью по Бренстеду и содержат меньше протоновых активных центров, [c.147]

    Природа кислотности, обусловливающей каталитическую активность алюмосиликата, четко не установлена [70]. Катализатор может быть протоновой кислотой или кислотой Бренстеда или Льюиса, но механизм изомеризации после образования карбоний-иона такой же, как в присутствии серной кислоты. Инициатор карбоний-ионов может образоваться в результате или отнятия гидридного иона от углеводорода кислотным катализатором, или образования алкена как продукта крекинга с последующим присоединением к этому алкену протона кислоты. ,,  [c.99]

    Характер реакции можно изменять соответствующим выбором катализатора п режима процесса. В литературе описаны опыты [33], в которых в качестве катализаторов применяли никель на кизельгуре и никель на кислотном носителе. Никель на кизельгуре катализирует ступенчатое последовательное деметанирование алкановой цепи, а при реакциях алкил-циклонентанов вызывает разрыв кольца. В присутствии никеля на алюмосиликате деметанирование протекает слабо и реакция приводит к отщеплению более крупных осколков. При применении одного только кислотного носителя ни гидрокрекинг, ни деметанирование пе протекают. Очевидно, что для отщепления от углеводородной цепи осколков крупнее метана необходимо присутствие как гидрирующего, так и кислотного компонента катализатора. Реакция, вероятпо, протекает путем передачи гидридного иона катализатору с образованием карбоний-иона, последующее расщепление которого дает алкен и новый карбоний-ион. [c.184]

    Разрыв С—Н-связи алкильной боковой цепи при дегидрировании на окисных катализаторах, судя по последним данным, является гомолитическим процессом, приводящим к образованию двух радикалов КСН г и Н". Это заключение подтверждается, например, данными Фарбера и др. [46] по дегидрированию изопропил-бензола над окисью цинка и окисью алюминия высокой чистоты и крекингу кумола на алюмосиликате. Авторы [461 исходили из того положения, что процесс, приводящий к образованию бензола и пропилена (П, протекает по карбоний-ионному механизму и является показателем этого типа активности, в то время как дегидрирование кумола, приводящее к образованию а-метил стирол а (2), соответствует свободно-радикальному механизму [471  [c.154]

    Л1 — протекают реакции скелетной изомеризации бутиленов и изомеризации по двойной связи, крекинг низкомолекулярных олефинов и, по-видимому, также дегидратация спиртов [225, 255—257, 279]. Для этих реакций с ростом содержания А12О3 в алюмосиликате каталитическая активность растет. Наиболее активна чистая А12О3. Механизм реакции на таких атомах А1, соответственно схеме (38), часто заключается в отщеплении гидрид-иона с образованием карбо-ний-иона, способного к дальнейшим превращениям. В работе Лефтина и Хермана [257], например, было показано с помощью ультрафиолетовых спектров, что при изомеризации бутиленов на алюмосиликатах с перемещением двойной связи промежуточными реак-ционноснособными веществами служат л-аллильные карбоний-ионы  [c.78]

    Образование продукта замещения высвобождает уксусную кислоту это явление наблюдается и на холоду, но особенно заметно при нагреве. Аналогичная реакция замещения была предложена Баллодом, Пацевичем, Фельдманом и Фростом [9] для объяснения влияния едкого натра на монтмориллонит. Страйт и Данфорт [10] показали, что едкий литий оказывает аномальное влияние на крекирующую активность синтетического алюмосиликата. Работами других исследователей [3, 7, И, 12] установлен механизм каталитического крекинга, в котором для стабилизации карбоний-иона, имеющего малую продолжительность жизни, необходима передача протона от кислотного центра с поверхности катализатора. Наличие протонного обмена было подтверждено Миллсом и др. [13] при помощи катализатора, содержащего окись дейтерия. Предложенное выше объяснение отравляющего действия натрия находится в полном соответствии с принятой теорией, так как замещение протона натрий-ионом по приведенному выше уравнению уменьшает возможность протонного обмена между катализатором и карбоний-ионом и вызывает равномерное снижение качества катализатора с увеличением концентрации металла. [c.259]

    Одной из первых реакций (табл. 1), где была показана высокая эффективность цеолитных катализаторов, является скелетная изомеризация парафиновых углеводородов [3, 4]. В этой реакции активность цеолитов типа X и Y, содержащих металлы VIII группы, значительно выше активности классических бифункциональных катализаторов типа металл—кислотный окисел и металл—аморфный алюмосиликат [5]. Механизм изомеризации углеводородов на этих катализаторах, как показано в наших работах [6—8], сходен реакции протекают через промежуточное образование олефина (циклоолефина). В присутствии водородной формы цеолита типа морденита процесс идет по другому механизму карбоний-ион получается не в результате присоединения протона кислотного компонента катализатора к оле-фину, а путем отщепления гидрид-иона от молекулы насыщенного углеводорода. В этом случае металл VIII группы не является необходимым компонентом катализатора изомеризации [9]. Однако добавление небольших количеств Pt или Pd к Н-мор-дениту стабилизирует его активность. [c.5]

    Особый интерес для исследователей в области катализа представляла природа тех центров, которые участвуют в изомеризации бутена-1 на алюмосиликате. Обычно принято считать, что реакция протекает по карбоний-ионному механизму. Недавно Одзаки и Кимура [11, используя метод дейтериевой метки, показали, что изомеризация происходит но протонному донорно-акцепторному механизму с участием адсорбированной фазы. В подробных исследованиях Холла, Гербериха, Ларсона и Хайтовера [2, 3] для подтверждения того, что атомы водорода и атомы дейтерия адсорбированной фазы вовлекаются в реакцию, были использованы дейтерированные олефины. Все еш,е не решенным остается вопрос о том, какая кислотность, бренстедовская или льюисовская, принимает участие в образовании адсорбированной фазы [4]. [c.331]

    То, что наблюдаемый спектр являлся результатом химической реакции между углеводородом и каталитически активными центрами поверхности алюмосиликата (хемосорбция) и не обусловлен обычным спектральным сурфатохромным сдвигом, явствовало из спектра этого соединения, адсорбированного на некислотном или очень слабо кислотном силикагеле [29]. Спектр (рис. 30, кривая В) силикагеля, обработанного парами трифенилметана в течение 1000 час при 100°, идентичен спектру (кривая А) этого углеводорода в спиртовом растворе. Хорошее совпадение этих спектров давало возможность предположить, что на силикагеле трифенилметан адсорбирован физически. Этот вывод получил дальнейшее подтверждение в заметном уменьшении спектральной интенсивности (кривая С) по мере откачки в продолжении 4 час при 100°. Напротив, на алюмосиликате, где углеводород хемосорбирован в виде иона карбония, не было отмечено уменьшения в поглощении даже после 48 час откачки при 275°. Эти данные представляли собой первое прямое доказательство образования ионов карбония как следствие хемосорбции третичного углеводорода на поверхности катализатора крекинга по реакции, сопровождающейся разрывом алифатической С—Н-связи. Общее значение процесса образования иона карбония при хемосорбции парафинов на алюмосиликате было показано сравнением спектров хемосорбированного 1,1-ди-фенилэтана и кумола (рис. 31) со спектрами ионов метилдифенил-и диметилфенилкарбония, наблюдаемыми для растворов соответствующих спиртов в серной кислоте. На основе вышеприведенных результатов общий ход реакции, имеющий место при хемосорбции углеводородов с третичным атомом углерода, должен быть следующим  [c.68]

    Механизм гетерогенного кислотного катализа принципиально не отличается от описанного выше гомогенного кислотного катализа. Предполагается образование ионов карбония на бренстедовских кислотных центрах поверхности катализатора [10]. В последнее десятилетие было выполнено много работ, показавших, что ряд окисных катализаторов и некоторые другие кислоты Льюиса обладают окислительной способностью [22]. Так, ка окиси алюминия происходит окисление спиртов [23], СО до СО2 [24], азота до окиси азота [25], а на алюмосиликате анион иода окисляется до 2 [26]. Адсорбция ароматических углеводородов на некоторых окиспых поверхностях сопровождается появлением интенсивных сигналов ЭПР, т. е. возникновением катион-радикалов из органических молекул [27—34]. То же установлено для ряда солей типа катализаторов Фриделя—Крафтса при взаимодействии с ароматическими системами в жидкой фазе [35,36]. Найдена линейная зависимость между поверхностной кислотностью специально приготовленных образцов окиси алюминия и концентрацией парамагнитных частиц, образующихся на поверхности этих образцов [33]. [c.13]

    В работе [216] было доказано, что полимеризация, этилена на таких катализаторах, как AlgOg и алюмосиликат, протекает на кислотных центрах типа Бренстеда через образование иона карбония  [c.188]

    РТсследования доктора Пипка с сотрудниками по Н — В-обмену в пропане являются новым и весьма обстоятельным дополнительным доказательством диссоциативного механизма обмена на диэлектриках (алюмосиликаты, окись алюминия), исключающего в качестве первичного поверхностного комплекса образование иона карбония. Это можно объяснить тем, что при адсорбции связи С — С слишком далеки от каталитической поверхности и поэтому не могут разрываться первыми. В поле электрических сил поверхности катализатора, эффективно действующих на расстоянии порядка атомных размеров, первыми для инициирования вовлекаются С — Н-связи углеводородной молекулы. [c.376]

    Преобладает мнение о кислотном характере катализаторов крекинга [5—7]. Однако имеются существенные расхождения во взглядах на природу и роль кислотных активных центров алюмосиликатов. Одни авторы считают действующим началом протонные бренстедтовские кислоты, другие — апротонпые кислоты Льюиса. Имеются также различные точки зрения на роль, которую играют кислотные центры в начальной стадии реакции. Томас [6], Р. Хепсфорд [7], Гринсфельдер и другие [8] в своих работах дали общую схему крекинга, основанную на образовании промежуточных соединений, содержащих карбониевые ионы. Но между этими авторами нет единодушия во взглядах на механизм образования иона карбония. Одни связывают образование иона карбония с отрывом катализатором отрицательного иона водорода от парафинов [c.153]

    Сравнивая известные спектры, Лефтип [28] пришел к выводу, что спектр трифенилметана, адсорбированного па алюмосиликате, указывает па образование ионов карбония. Это сопоставление, представленное на рис. 9, не оставляет сомнений в правильности отнесения. [c.358]

    Однако Хиршлер и Хадсон [3616] разделяют мнение, что только бренстедовские кислоты ответственны за активность алюмосиликатов. Изучая адсорбцию перилена и трифенилметана, они пришли к выводу, что ионы карбония не образуются по механизму отрыва гидридного иона, как утверждал Лефтин [362]. Напротив, трифенилметан окисляется хемосорбированным кислородом в трифе-нилкарбинол в ходе фотокаталитической реакции с последующим взаимодействием с бренстедовской кислотой с образованием воды и иона трифенилметилкарбония. После обработки безводным аммиаком органическое соединение вновь выделяется экстракцией в виде трифенилкарбинола. Для того чтобы отравить один льюисовский центр, для хемосорбции трифенилметильных ионов требовалось около тринадцати молекул аммиака. Авторы объясняют селективное ингибирование определенных каталитических реакций щелочью предположением, что только некоторые из кислотных протонов вступают в обмен с ионами щелочных металлов. [c.275]

    Рассмотрение строения цеолитов и экспериментальных данных но изучению их каталитической активиости позволило высказать предположение [16], объясняющее многие закономерности катализа на цеолитах. Оно состоит в том, что активные центры при катализе реакций, идущих через образование иона карбония, расположены на шестичленпых кольцах алюмосиликат-ной решетки цеолитов, не запятых катионами металлов (sn). Такие кольца несут избыток отрицательного заряда и, возможно, присоединяют к себе протон. По своему каталитическому действию они могут быть сходными с кислотными центрами аморфных алюмосиликатов и к ним можно отнести доводы, приводимые авторами [5], в пользу кислотных центров в цеолитах. Важно отметить, что независимо от числа А104-тетраэдров, входящих в шестичленное кольцо, оно должно рассматриваться как один активный центр, так как на нем, по-видимому, не могут адсорбироваться одновременно несколько молекул. Изменение числа А104-тетраэдров в кольце может лишь 1Н Сколько изменить активность центра. [c.139]


Смотреть страницы где упоминается термин Алюмосиликаты как образование карбоний-иона: [c.101]    [c.76]    [c.326]    [c.237]   
Гетерогенный катализ (1969) -- [ c.375 ]




ПОИСК





Смотрите так же термины и статьи:

Алюмосиликаты

Алюмосиликаты как иониты

Ионные образование

Ионов образование

Ионы образование

Карбоний-ионы

Карбония образование

Образованно карбоний-ионов



© 2025 chem21.info Реклама на сайте