Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вязкоупругие свойства

    Для интерпретации экспериментальных данных в качестве модели вязкоупругих свойств реальной сплошной среды выберем модель Кельвина — Фойгта с соответствующей диаграммой связи  [c.309]

    Аномалии в механических свойствах полимеров достаточно подробно рассмотрены в работах [2—5, 16, 17, 43, 48, 49]. Причины, вызывающие эти аномальные отклонения, кроются в свойствах и строении цепных макромолекул, а также в развитии тех или иных надмолекулярных структур. Исходя из современных представлений релаксационных явлений полимерных тел [16, 18, 42, 48], можно утверждать, что рассматриваемой системе полимер — растворитель при ограниченном набухании полимера с пространственной структурой присущи свойства, характерные как для жидкости, так и для твердого тела,— так называемые вязкоупругие свойства. Свойства вязкоупругости проявляются различными путями. Тело, не являющееся идеально твердым, не достигает постоянных значений деформации при постоянных напряжениях, а продолжает медленно деформироваться с течением времени (ползти). С другой стороны, не являющееся полностью жидким, тело при течении под действием постоянного напряжения может накапливать подводимую энергию, вместо того чтобы рассеивать ее в виде тепла. [c.308]


    ВЛИЯНИЕ ПРОЦЕССОВ РЕЛАКСАЦИИ НА ВЯЗКОУПРУГИЕ СВОЙСТВА ПОЛИМЕРОВ [c.137]

    Для ностроеиия условий, обеспечивающих заданные нормалями перемещения и иерегруаки защищаемого объекта, модель виброзащитного устройства наделяется вязкоупругими свойствами, при которых связь меягду усилиями px( ) и перемещениями их 1) принимается в форме наследственной теории Больцмана — Вольтерра  [c.134]

    Из нефтяных жидкостей вязкоупругие свойства проявляют нефти и нефтепродукты с большим содержанием смол. В настоящее время на практике применяются и искусственно создаваемые вязкоупругие жидкости, Так их способность восстанавливать форму используется при создании жидкостных разделителей, имеющих высокую проходимость и плотность прилегания, к стенкам трубопровода. Большое практическое значение имеет снижение сопротивления при турбулентном течении, достигаемое добавкой незначительного количества высокополимеров, придающих жидкости вязкоупругие свойства (эффект Томса). [c.30]

    Однако при изучении различных вулканизатов в широком интервале температур и деформаций обнаруживаются существенные различия вязкоупругих свойств в зависимости от структуры эластомеров и условий их вулканизации. [c.83]

    Рассматривая теоретические принципы нарушения агрегативной устойчивости синтетических латексов электролитами, надо иметь в виду, что агрегативная устойчивость этих коллоидных систем обусловливается наличием адсорбционного слоя, который имеет достаточно высокий заряд диффузного ионного слоя ( -потенциал для большинства латексов равен 100- 60 мВ) [32], обеспечивающий стабилизацию таких систем за счет электростатических сил отталкивания, и достаточно высокую степень гидратации, наряду с вязкоупругими свойствами и достаточной механической прочностью. С другой стороны, стабилизация синтетических латексов осуществляется в большинстве случаев ионными ПАВ, у которых при введении электролитов в систему резко меняется растворимость и происходит их высаливание из раствора. [c.255]

    Экспериментальные методы, применяемые для определения и характеристики структуры полимерных цепей и их совокупностей, упоминались в общем обзоре гл. 1. Дополнительную информацию по дифракции рентгеновских лучей [3], рассеянию нейтронов [4—6], электронов и света [4, 52, 53], оптической и электронной микроскопии [3, 14Ь], термическим [3, 54] и вязкоупругим свойствам [14с, 55—57] и методу ядерного магнитного резонанса (ЯМР) [3] можно получить из источников, указанных в списке литературы к данной главе. В гл. 5 и 6 соответственно будут рассмотрены методы инфракрасного поглощения (ИКС) и ЭПР. [c.35]


    Вязкоупругие свойства сополимеров, в основе которых лежат сложные молекулярные процессы, носят релаксационный характер [49]. [c.308]

    Этот метод исследования вязкоупругих свойств жидкости позволяет проводить измерения на звуковых частотах в широком интервале температур и скоростей сдвига при фиксированной, постоянной во времени, величине рабочего зазора. Это позволяет проводить моделирование процесса формирования граничного слоя жидкости на контакте с твердой фазой [5]. [c.83]

    Создание однородного поля напряжений в условиях сдвига на практике реализуется относительно легко, а в случае растяжения требует множества ухищрений, поэтому большинство исследователей работают в условиях сдвигового поля. Оно создается либо с помощью ротационных систем (например, вращения цилиндра в цилиндре или конуса относительно плоскости) или длинных капиллярных трубок. Ротационные приборы подробно описаны в работе [51]. В предыдущем параграфе настоящей главы рассматривались вязкостные характеристики полимерных систем и лишь вскользь упоминались вязкоупругие свойства. Однако практически любая полимерная система способна при определенных условиях воздействия проявлять высокоэластическое деформационное состояние, в котором у нее наблюдаются большие обратимые деформации. Необратимые деформации у полимерных тел могут возникать уже при температурах, близких к температуре стеклования, но там они не играют основной роли. [c.175]

    Релаксационная спектрометрия полимеров в настоящее время находится в начальной стадии развития, но ей принадлежит, по-видимому, большое будущее. Важны развитие и разработка новейших методов получения непрерывных и дискретных спектров и применение их для расчетов и прогнозирования вязкоупругих свойств полимерных материалов. Очевидно, что разработка современных методов расчета и прогнозирования невозможна без знания всех релаксационных механизмов и их кинетических характеристик для различных полимерных материалов и особенно для тех, которые находятся в условиях длительной эксплуатации. В настоящее время можно считать установленными основные релаксационные пере ходы в полимерах, которые необходимо учитывать при прогнозировании их свойств. В частности, это относится к новым данным по релаксационным переходам (а -, Хг, кз- и ф-переходы), находящимся по шкале времен релаксации между а-процессом (стеклованием) и б-процессом (химической релаксацией). Для прогнозирования эксплуатационных вязкоупругих свойств эластомеров при относительно низких температурах наиболее важную роль играют медленные физические процессы релаксации ( - и ф-процессы), так как в течение длительного промежутка времени (до 50 лет) химической релаксации практически не наблюдается. Однако при высоких температурах для длительного прогнозирования основную роль начинает играть химическая релаксация. [c.144]

    Ввиду сложности точного определения параметров ядра релаксации материала расчет повторялся для различных значений этих параметров, охватывающих широкий диапазон вязкоупругих свойств (значение интегральных членов в выражении (3.176) варьировалась от 3,5 до 30%). Качественная картина процесса, показанная па рпс. 3.6 при этом сохранилась. Изменение параметров ядра релаксации, или, что то же самое, вязкоупругих свойств материала, смещает положение кривых по вертикали. Иными словами, несколько изменяется абсолютное значение коэффициентов демпфирования, положение нее их максимумов относительно величины Ег сохраняется. [c.151]

    Глава 5. МОЛЕКУЛЯРНАЯ ПОДВИЖНОСТЬ И ВЯЗКОУПРУГИЕ СВОЙСТВА ПОЛИМЕРОВ [c.124]

    Типовые вязкоупругие свойства высокомолекулярных полимеров основаны на их структуре, которая определяется типом, размером и строением макромолекул. У синтетических полимеров макромолекулы представляют собой цепочки с линейными, разветвленными или сетчатыми цепями. Различные структуры молекул могут образовать основу для классификации полимеров, например, по ASTM 1418-78. Ниже в качестве примера приводится классификация полимеров по зависимости их структурно-механи-ческих свойств от температуры (DIN 7724)  [c.51]

    Дискретный спектр может быть применен к описанию вязкоупругих свойств полимера тогда, когда кроме времен релаксации Ть Т2, Тп известны и вклады отдельных релаксационных процессов ], Е-2,. .., Еп в общий процесс релаксации. Релаксирующее напряжение тогда может быть рассчитано по уравнению [c.130]

    Для лучшего понимания причин, вызывающих потери давления в расплаве полимера на входе в капилляр, необходимо экспериментальное определение истинного характера течения в этой области. В настоящее время эта работа не закончена, однако имеющиеся данные свидетельствуют о больших потерях давления на входе в капилляр, связанных с вязкоупругими свойствами расплавов и большими значениями продольной вязкости. Для проектирования головок необходимо располагать экспериментальными данными, полученными на капиллярах нулевой длины или на капиллярах с различным отношением что позволит экстраполировать данные к 1/Оо =0. [c.476]


    Вязкое течение линейных полимеров является одним из важных случаев проявления их вязкоупругих свойств. Наряду с упругой и высокоэластической составляющими деформации при определенных условиях в полимерах может развиваться также необратимая пластическая деформация (текучесть). Для линейных некристаллических полимеров она проявляется при Т>Тс, а для кристаллических —при 7 >Гпл- [c.161]

    Квазистатические методы исследования релаксации напряжений и ползучести целесообразно использовать в температурных интервалах, в которых происходят переходы между различными физическими состояниями, потому что именно в этом интервале температур наиболее полно проявляются вязкоупругие свойства полимерных материалов в зависимости от времени. [c.125]

    Обычно результаты экспериментального исследования изменения вязкоупругих свойств в изотермических условиях представляют в виде графиков зависимости изучаемое свойство — время. На рис. 8.3 и 8.4 приведены примеры таких зависимостей для релаксации и ползучести. [c.126]

    Будучи гибкой, полимерная цепь непрерывно флуктуирует, приобретая всевозможные конформации. Множественность конформаций непосредственно связана с вязкоупругими свойствами полимеров и во многом определяет их высокоэластичпость. Молекулярная масса, характеризуемая степенью полимеризации, влияет на текучесть полимерных расплавов и растворов, а также на деформируемость и прочность полимерных тел. С ростом степени полимеризации механическая прочность и вязкость полимеров увеличиваются. С вязкостью полимерных веществ связаны релаксационные процессы, протекающие при различных механических воздействиях. Очевидно, что чем выше молекулярная масса, тем больше время, необходимое для устаповлеиия равновестюго состояния нри механическом воздействии на него. [c.48]

    Построение более сложных реологических уравнений, описывающих вязкоупругие свойства сополимера, вытекает из возможности положения упругих и вязких свойств реальной среды. С другой стороны, такой синтез сложных уравнений вязкоупругости может быть существенно облегчен, если для описания поведения реальных полимерных систем в механических полях использовать. модельные представления, основанные на применении тех же общих законов упругости (закон Гука) и вязкости (закон Навье — Стокса). [c.309]

    Т , увеличению возможного числа конформаций макромолекул и, как следствие этого, к повышению уровня гомологических температур. Все это влияет на вязкоупругие свойства наполненных полимеров и приводит к ускорению релаксационных процессов. Поэтому так же, как и при введении влаги в материал, становится возможным построение обобщенных кривых деформируемости методом концентрациопно-временнбй аналогии, где фактором, облегчающим 5 скорение релаксационных процессов, является концентрация пластификатора. В определенных интервалах объемного процентного содержания пластификатора С (%) и времени упреждения обобщенные кривые, построенные методом копцеитрацпоино-временной аналогии, могут быть использованы [c.75]

    Измеритель вязкоупругих свойств ИВУС-1 предназначен для неразрушаюп1его экспресс-определения физико-механических свойств изделий из полимерных материалов (резин, пенополиуретанов и др.). [c.69]

    Методика скоростных квазистатических испытаний. Стремление упростить и еще более сократить время испытаний полимерных материалов привело к созданию еще одного эксиресс-метода определешш вязкоупругих свойств, который может быть пазваи методом скоростных квазистатических испытаний. [c.78]

    К жидкостям с нестационарными реологическими характеристиками можно отнести и так называемые вязкоупругие жидкости, способные одновременно проявлять свойства жидкого и твердого тел. Этот термин ввел Джеффрис (в 1929 г.). Из нефтяных жидкостей вязкоупругие свойства проявляют нефти и нефт епродукты с большим содержанием смол. [c.12]

    Выявлялась также продолжительность вязкоупругого состояния, так как ранее [5] было установлено, что гра-фитированные материалы до 2 200°С имеют хрупкий характер разрушения и лишь при температуре выше 2500 С приобретают вязкоупругие свойства. Резкое замедление скорости деформирования при выходе на изотермичес- [c.216]

    Для характеристики особенностей строения макромолекул полимеров и их взаимодействия чаще всего проводятся исследования физических свойств разбавленных полимерных растворов разной концентрации. Вязкость, измеряГемая в обычных условиях, относится к почти предельно разрушенным пространственным структурам, обладающим в таких разбавленных растворах полимеров весьма малой прочностью. Случаю, когда практически отсутствует пространственная структура в системе, соответствует так называемая удельная вязкость (по терминологии Штаудингера). Исследования вязкоупругих свойств растворов полимеров в условиях [c.154]


Смотреть страницы где упоминается термин Вязкоупругие свойства: [c.66]    [c.24]    [c.55]    [c.63]    [c.69]    [c.80]    [c.82]    [c.106]    [c.83]    [c.44]    [c.155]    [c.52]    [c.286]    [c.536]    [c.135]   
Смотреть главы в:

Вода в полимерах -> Вязкоупругие свойства

Физическая кинетика макромолекул  -> Вязкоупругие свойства


Практическое руководство по синтезу и исследованию свойств полимеров (1976) -- [ c.37 ]

Физическая химия наполненных полимеров (1977) -- [ c.136 , c.241 , c.244 ]

Реология полимеров (1977) -- [ c.0 ]

Свойства и химическое строение полимеров (1976) -- [ c.143 , c.161 , c.172 ]

Свойства и химическое строение полимеров (1976) -- [ c.143 , c.161 , c.172 ]

Графит и его кристаллические соединения (1965) -- [ c.57 , c.58 ]

Полистирол физико-химические основы получения и переработки (1975) -- [ c.0 , c.142 , c.173 ]

Производство и применение резинотехнических изделий (2006) -- [ c.167 ]




ПОИСК





Смотрите так же термины и статьи:

Вязкоупругость



© 2025 chem21.info Реклама на сайте