Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Особенности электронного строения макромолекул

    ОСОБЕННОСТИ ЭЛЕКТРОННОГО СТРОЕНИЯ МАКРОМОЛЕКУЛ [c.59]

    Сравнение химического строения и электрофизических свойств этих полимеров показывает, что 1) с увеличением вероятности нарушения сопряжения в цепи растет энергия активации 2) введение группы —СНд — в полимерную цепь приводит к нарушению сопряжения, что обусловливает рост энергии активации. Как видно из этих результатов, величина энергии активации полимеров с системой сопряженных связей определяется химическим строением характер боковых заместителей, а также особенности надмолекулярной структуры, но-видимому, определяют главным образом вероятность туннельного перехода электронов от одной макромолекулы к другой. [c.165]


    Наоборот, эффект существенного изменения реакционной способности функциональной группы (в частном случае двойной связи) был продемонстрирован Хуторским, Догадкиным и Новиковым на примере реакций присоединения серусодержащих соединений к изопентену и полиизопрену [6]. В данном случае за счет чисто электронного взаимодействия вдоль цепи и большей делокализации л-электронов реакционная способность двойной связи при переходе к полимеру падает, если речь идет об электро-фильных актах какого-либо реагента. Особенно заметна такая делокализация для полиизопренов регулярного строения типа НК, где возможны, очевидно, большие эффекты дальнодействия Для таких полимеров совершенно очевидна разница в химиче ском поведении по сравнению с низкомолекулярными аналогами Близкой реакционной способности полимера и низкомолеку лярного аналога можно во-первых, в принципе ожидать, если рассматривается одностадийная реакция в системе полимерная цепь — малая молекула, ибо реакция между двумя макромолекулами естественно должна иметь гораздо меньше сходства с реакцией между двумя малыми молекулами. [c.252]

    Если перед присоединением к макрокатиону молекулы мономера успевают ориентироваться в его поле или в поле противоиона, то такой процесс называют катионно-координационной полимеризацией. Ориентированные звенья в составе макромолекул создают участки, стереорегулярной структуры. Чем прочнее комплекс мономер — макрокатион или мономер — противоион, тем выше степень стереорегулярности макромолекул. Прочность комплекса, в свою очередь, возрастает с понижением температуры. Ориентация в поле макрокатиона особенно характерна для мономеров, имеющих свободные пары электронов (простые виниловые эфиры, акрилаты). Получающиеся полимеры имеют преимущественно изотактическое строение. [c.127]

    Релаксация в той или другой степени относится ко всем формам перемещения частиц в материале, но скорости релаксации разных частиц в данном полимере при одинаковых внешних условиях могут сильно различаться. Скорость перемещения электронов практически не изменяется, перемещения же атомов и атомных групп и изменения их колебательного движения задерживаются в различной степени п зависимости от их массы и характера связи, а также степени связанности их с другими частицами. Это существенно влияет на диэлектрические свойства полимеров. То же относится и к перемещениям или изменениям расположения отдельных звеньев цепей и в особенности макромолекулы в целом. Скорость перемещения макромолекул сильно зависит от степени полимеризации и от строения цепей. При повышении степени полимеризации скорость релаксации уменьшаётся. Ещё больше усложняются эти соотношения в полимерах, содержащих струк- УрШе единицы различные по составу и строению, т. е. в сополимер ахТ привитых полимерах и пр. Для различных форм движения частиц в данном полимере время релаксации может сильно различаться, [c.219]


    В литературе достаточно широко распространено мнение о том, что с ароматичностью асфальтенов прямо связана концентрация в них ПМЦ. В основе этого лежит известное положение об асфальтенах как о поли-сопряженной системе. Наличие системы полисопряжения способствует стабилизации неспаренного электрона, что и приводит к появлению ПМЦ. Анализ наших данных не дает оснований для такого однозначного вывода. Действительно, для асфальтенов некоторых месторождений (Федоровское, Самотлорское) такая связь намечается. Однако рассмотрение совокупности месторождений показывает полное отсутствие этой связи. Вероятно, причина в особенностях строения асфальтенов нефтей. Разными авторами предложено множество различных моделей строения асфальтенов [13 . При их рассмотрении нетрудно убедиться, что при одной и той же степени ароматичности они должны существенно различаться по своим парамагнитным свойствам. При этом наибольшей концентрацией ПМЦ обладает структура, состоящая из системы полисопряженных блоков, изолированных друг от друга насыщенными структурами. В этом случае каждый такой блок, или участок в общей макромолекуле, будет представлять собой своеобразный "свободный радикал", а наличие между ними насыщенных фрагментов будет препятствовать передаче электрона, т.е. их "рекомбинации". [c.93]

    Ширина запрещенной зоны у насыщенных полимерных молекул составляет около 10 эВ, т. е. переход электрона из валентной зоны в зону проводимости мало вероятен. Кроме того, делокализация хотя бы одного а-электрона в основной цепи приводит к разрыву макромолекул. Иное положение у полимеров, молекулы которых состоят из длинных цепей сопряженных двойных связей с я-электронами. У таких низкомолекулярных и полимерных органических веществ в пределах цепи сопряжения п-электроны делокализованы и обладают высокой подвижностью. Особенности строения таких веществ макроскопически проявляются в ряде особенностей физических свойств. Например, с увеличением длины цепи сопряженных двойных связей в алифатических углеводородах энергия возбуждения л-элек-тронов, соответствующая переходу из основного состояния в возбужденное сипглетное, уменьшается. Для этих веществ характерна высокая заселенность триплетных уровней с двумя неспаренными электронами, дающими сигнал ЭПР. Повышенная подвижность л-электронов вдоль цепи сопряжения приводит к значительной экзальтации рефракции. С ростом длины сопряжения возрастает электрическая проводимость низкомолекуляр-ных органических полупроводников [4, с. 41]. [c.65]

    При полимеризации присоединением образование макромолекулы не сопровождается образованием каких-либо низкомолекулярных соединений из реагирующих молекул. Виниловые мономеры представляют собой основной класс соединений, полимеры которых могут быть получены полимеризацией указанного типа. Термин виниловый мономер применяется ко всем олефиновым соединениям строения СНг = СНХ, СН2 = СХУ в качестве примеров соединений этого класса можно назвать стирол СН2 = СН—СеНв и метилметакрилат СН2 = С (СНз) СООСНз. Другие олефиновые производные (например, стильбен, малеиновый ангидрид, эфиры фумаровой кислоты) могут участвовать в реакции соиолиме-ризации, хотя они обычно и не образуют гомополимеров по свободно-радикальному механизму. Олефиновые соединения указанного выше типа, в которых атомы водорода замещены атомами фтора, также обладают многими характерными особенностями виниловых мономеров и обычно включаются в этот класс. Е есколько далее будут рассматриваться реакции полимеризации винпловых мономеров, протекающие через стадию образования промежуточных продуктов свободно-радикального характера под свободным радикалом понимают соединение, обладающее неспаренным электроном. Термин радикал используется в этой книге как синоним термина свободный радикал . [c.10]

    Если электронографические и рентгенографические исследования полимеров дают представление о строении кристалли-чески.х облаете , линейные размеры которых в десятки и сотни раз. меньше длины молекулярных цепей, то в электронном микроскопе можно видеть всю макромолекулу, изучать взаимное расположение цепей и образующиеся кристаллы полимеров. ДАегол электронно микроскопии особенно эффективен в соче- [c.122]

    И вытягивание цепей макромолекул характерно для белков Р-структуры. Коллаген отличается от белков группы КАЮФ при электронно-микроскопическом исследовании он дает особенно четко выраженные поперечные полосы. Это явление пока не нашло объяснения с точки зрения химического строения. Бир объясняет наличие поперечной полосатости чередованием упорядоченных и неупорядоченных областей, возникаюш,их в результате повторения в цепи определенных сочетаний аминокислот упорядоченные области состоят из аминокислот с короткими боковыми цепями, для неупорядоченных областей характерно наличие в макромолекуле элементарных звеньев с заместителями большей величины. Макромолекулы коллагена не имеют формы а-спирали Полинга. Согласно рентгеноструктурным исследованиям Рахамандрана, каждые три цепи соединяются водородными связями в тройную спираль с очень большим углом подъема. [c.103]


    Проблема замены платины в процессе катодного восстановления кислорода менее дефицитными катализаторами пока не нашла своего практического решения. Особенно трудными оказались поиски эффективных злектрокатализаторов, устойчивых в кислом электролите. Внимание исследователей, работающих в области катализа, привлекли к себе хелаты металлов, в частности фталоцианины [1—8]. Они представляют собой химически и термически стойкие металлоорганические соединения, обладающие полупроводниковой проводимостью [9—12]. Их структура подобна структуре природных биохимических катализаторов, например ге-мину и хлорофиллу, катализирующих процессы, протекающие через образование активированных кислородсодержащих комплексов [13]. Во фталоцианинах центральный атом металла окружен четырьмя атомами азота, связанными с макромолекулой лиганда, образующей макроцикл с циклически сопряженной системой я-электро-нов. Вследствие такой структуры происходит взаимодействие между электронами -орбиталей центрального атома металла с орбиталями л-электронов макроцикла, в результате чего расщепляются пятикратновырожденные -орбитали центрального атома металла [5, 6]. Молекула кислорода адсорбируется центральным атомом металла фталоцианина, образуя с ним донорно-акцепторную связь. Частично или полностью заполненная г -орбиталь центрального атома металла перекрывается я-электронами двойной связи молекулы кислорода, обратная связь со стороны центрального атома металла образуется за счет электронов заполненной уг -орбитали, что приводит к растяжению О—О-связи. Пользуясь такой моделью, можно объяснить зависимость каталитической активности фталоцианинов в процессе катодного восстановления кислорода от природы центрального атома металла и строения макролиганда [1, 6, 11]. Электрокаталитическая активность фталоцианинов металлов проявляется при использовании носителя. При этом промотирующий эффект тем выше, чем более развита поверхность носителя, чем больше его электропроводность и чем активнее сам носитель катализирует данный процесс [7, 14]. [c.39]


Смотреть главы в:

Термостойкие ароматические полиамиды -> Особенности электронного строения макромолекул




ПОИСК





Смотрите так же термины и статьи:

Электронное строение

электронами электронное строение



© 2025 chem21.info Реклама на сайте