Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температура в гомологических рядах

    Остаточные битумы. Остаточные битумы получают вакуумной перегонкой мазутов. Так как мазут представляет собой смесь веществ различных гомологических рядов, то при равных температурах могут выкипать представители разных гомологических рядов. Таким образом, при обычной вакуумной перегонке (не экстрактивной), используемой в битумном производстве, не происходит резкого разделения компонентов по их структуре. [c.80]


    Чем больше плотность нефтепродукта, тем выше его показатель преломления. Показатель преломления циклических соединений больше, чем у алифатических. Циклоалканы занимают промежуточное положение между аренами и алканами. В гомологических рядах углеводородов наблюдается линейная зависимость между плотностью и показателем преломления. Для фракций циклоалканов существует симбатная зависимость между температурой кипения или молярной массой и показателем преломления. [c.87]

    Не только термодинамическая устойчивость парафиновых углеводородов определяется их строением, в частности расположением метиль-ных групп. Длина углеводородной цепи и степень ее разветвления, положение метильных групп во многом определяют физические свойства парафинового углеводорода, в том числе температуру кристаллизации. Наличие в керосиновых, дизельных и других фракциях значительных количеств линейных парафиновых углеводородов обуславливает их высокую температуру кристаллизации. Наглядным примером служит зависимость температуры кристаллизации парафиновых углеводородов Сю— i6. имеющих различную структуру (рис. 4.3). Обращает на себя внимание общая закономерность, обнаруженная авторами работы [130], - ступенчатый рост температуры кристаллизации парафиновых углеводородов различных гомологических рядов. При перемещении метильной группы внутрь углеводородной цепи температура кристаллизации понижается, хотя это изменение носит неравномерный характер (рис. 4.4). Высококипящие парафиновые углеводороды в процессе гидроизомеризации претерпевают наиболее существенные превращения в продукты гидрокрекинга и изомеризации, и это обеспечивает значительное снижение температуры кристаллизации перерабатываемых фракций. [c.113]

    Н1а основании анализа данных о понижении температур кипения азеотропных смесей оказывается возможным выбирать разделяющий агент даже для систем, компоненты которых являются членами одного гомологического ряда. Примером такой системы является система этиловый изопропиловый спирт. Несмотря на незначительное различие температур кипения этих веществ, их азеотропы с водой довольно значительно отличаются по температурам кипения. Для изопропилового спирта АГ равно 82,5—80,38 = 2,12°, тогда как для этилового спирта АГ, всего 78,3—78,15=0,15°. Это показывает, что в системе этанол— [c.59]

    Пентан не образует комплекса в нормальных условиях, но комплекс можно получить при низкой температуре под давлением. Гексан является первым чл( ном гомологического ряда м-алканов, который образует комплекс при комнатной температуре и атмосферном давлении. В аналогичных условиях олефины дают комплексы, начиная лишь с 1-октена. Для верхнего предела длины цепи ограничений не имеется, кроме тех препятствий, которые могут возникнуть в связи с растворимостью углеводородов. При повышении температуры необходимо учитывать растворимость углеводородов и допустимую скорость реакции, так как прочность решетки мочевины уменьшается и при дальнейшем нагревании при 132,7 достигается температура плавления. [c.204]


    Величина определяющей вязкости того или иного углеводорода или той или иной фракции нефти зависит в основном от молекулярного веса (а следовательно, и температуры кипения), а также и от химической природы. Чем выше молекулярный вес я температура кипения данного углеводорода (в пределах гомологического ряда или структуры определенного типа), тем выше его определяющая вязкость, а также и температура вязкостного застывания, если этот углеводород не является кристаллизующимся. [c.38]

    По всей видимости, горению предшествует разложение (крекинг) топлива, и по этой причине желательно, чтобы в дизельных топливах содержались термически нестабильные углеводороды — высшие парафиновые. В гомологическом ряду углеводородов температура воспламенения уменьшается при увеличении молекулярного веса в связи с тем, что уменьшается энергия активации, необходимой для крекинга больших молекул. Для углеводородов с низкой температурой восиламенения, как правило, характерен небольшой период запаздывания. Относительную легкость воспламенения приблизительно можно охарактеризовать величиной кри- [c.438]

    Одним из методов первой группы является метод тигля , когда с помощью специальной капельницы получают капли заданного размера, которые падают на дно тигля, нагретого до заданной температуры. Время с момента падения капли горючего на дно тигля и до появления пламени характеризует задержку самовоспламенения горючего, а температура дна тигля — температуру самовоспламенения горючего. Данный метод удобно использовать для сравнительной оценки Гв и xi различных горючих жидкостей. Б табл. 3.4 приведены результаты такой оценки. Как видно из таблицы, существует определенная зависимость основных параметров самовоспламенения (Гв и тг) от химического состава горючего. Оба параметра являются взаимозависимыми. В пределах одного гомологического ряда зависимость между Гв и Ti достаточно хорошо описывается уравнением вида [c.134]

    В предыдущем разделе было установлено, что окисление метана может быть однозначно объяснено кинетикой стационарного состояния, которая постулирует, что концентрация промежуточных продуктов, а следовательно, и скорость реакции, достигают стационарного состояния, зависящего только от постепенного расходования реагирующих веществ. Однако по отношению к высшим членам гомологических рядов от концепции стационарного состояния следует отказаться по крайней мере применительно к окислительным реакциям при низкой температуре, характеризующимся появлением холодного пламени и двухстадийного воспламенения.-Эти явления свойственны всем углеводородам и соединениям углеводородных рядов, особенно эфирам и альдегидам, кроме метана, метилового спирта, бензола, этилена, глиоксаля и формальдегида. [c.249]

    ПО результатам газо-хроматографических опытов при разных температурах с одной и той же колонкой при одиой и той же объемной скорости газа w. Отсюда следует, что для различных членов гомологического ряда н-алканов (при постоянных ю и температуре) [c.565]

    Из уравнения (33) следует, что для адсорбции различных членов гомологического ряда н-алканов (при постоянной температуре колонки) [c.566]

    Вязкость автомобильных бензинов существенно меняется при изменении температуры. Температурный коэффициент вязкости топлив возрастает с понижением температуры и ростом абсолютной величины вязкости. В каждом гомологическом ряду углеводородов температурный коэффициент растет с увеличением молекулярного веса. Нафтеновые углеводороды по сравнению с алифатическими [c.48]

    Вязкость псевдоожиженного слоя падает с ростом скорости ожижающего агента, а вязкость жидкости — с ростом температуры, причем в обоих случаях установлена экспоненциальная зависимость. Заметим также, что вязкость псевдоожиженных систем повышается с ростом размера твердых частиц, как и вязкость жидкости — с увеличением размеров молекул (например, в гомологическом ряду углеводородов). Для выражения вязкости жидкости и псевдоожиженного слоя предложена общая формула [c.478]

    Если твердая фаза состоит из углеводородов различных гомологических рядов и их растворимость в охлаждаемой жидкой фазе такова, что в момент кристаллизации выделяется более одного типа углеводородов, то твердая фаза образует либо смешанные кристаллы, либо нечетко выраженную кристаллическую форму. При достаточном избытке жидкой фазы, способной при данной температуре удерживать в растворе все группы твердых углеводородов кроме одной, по мере охлаждения раствора остальные группы могут кристаллизоваться на решетках первично образовавшихся кристаллов. Если сохраняется некоторое оптимальное соотношение между выделяющимися углеводородами, то форма кристалла соответствует первично образующейся. В идеальном случае на решетке первично образующихся кристаллов накапли- [c.128]


    Для первых членов гомологических рядов инкременты группы СНг различны и отличаются от инкрементов, относящихся к высшим гомологам, приведенных в табл. VI, 7 и VI, 9. Но относительные изменения этих инкрементов с температурой большей частью бывают настолько близки между собой, что с тем или другим лри-ближением обычно можно рассматривать значения этих инкрементов при разных температурах как пропорциональные между собой. Нередко отчетливо проявляется различие инкрементов для низших гомологов с четным и нечетным числом атомов углерода (см., например, табл. VI, 3). Поэтому если в качестве исходных пользоваться данными, относящимися к этим гомологам, то лучше определять инкременты по двум гомологам с четным числом атомов углерода или по двум гомологам с нечетным числом атомов углерода. [c.221]

    При достаточной применимости этих допущений оба уравнения для и оба урав нения для Ig/ довольно хорошо отражают фактические соотношения и приводят к результатам, не содержащим значительной погрешности. Так, при расчете константы равновесия реакции гидрогенизации этилбензола до этилциклогексана по данным для аналогичной реакции гидрогенизации толуола при 700 К уравнение (VII, 34) приводит к значению Ig/С оо = —4,89, а уравнение (IV, 29)—к значению —4,84, в то время как расчет по справочным данным, относящимся непосредственно к компонентам рассматриваемой реакции, приводит к значению —4,86. В табл. VII,20 сопоставлены результаты расчета Ig этой реакции по уравнению (VII, 34) для других температур. В табл. VII, 21 также сопоставлены Ig/ , но реакций гидрогенизации некоторых алкенов при 700 К. Хотя расчет был произведен в этом случае по первому члену гомологического ряда — этилену, однако для [c.293]

    Линейный характер зависимости между lg ляет легко определять состав азеотропов членов гомологического ряда по температурам кипения и составам азеотропов двух из них. [c.87]

    Этилен ведет себя па первый взгляд так, как будто оп принадлежит к другому гомологическому ряду, чем а-олефины с большим числом углеродных атомов [43]. При действии этилена на триэтилалюмипий нри температуре 100—120° и давлении этилена около 100 ат молекулы этилена внедряются между алюлгпнием и этплып.(ми группами [c.67]

    Из жидких алифатических углеводородов наилучшим исходным материалом для сульфохлорирования являются н-парафины типа н-додекана и октадекана. Правда, и средние члены гомологического ряда, как н-гексан и н-октан, реагируют легко и сравнительно однозначно. Однако подобные углеводороды не являются подходящим промышленным сырьем, так как в чистом виде они мало доступны и слишком дороги. Они могут быть получены из соответствующих спиртов нормального строения каталитической дегидратацией последних в олефины, которые з.атем под давлением гидрируют, например в присутствии никелевого катализатора, в соответствующие парафины, или восстановлением спиртов нормального строения в одну ступень в насыщенные углеводороды, которое осуществляется, например, пропуска-нояем их в смеси с водородом над сульфидными катализаторами, лучше всего над смесями сульфидов никеля и вольфрама при температуре 300—320° и давлении 200 ат. [c.396]

    Температура плавления кристаллизующихся углеводородов имеет тенденцию к повышению с увеличением молекулярного веса, усилением поляризуемости и симметричности молекул. Повышение температуры плавления с увеличением молекулярного веса закономерно для углеводородов одного гомологического ряда и однотипной структуры. Температура плавления кристаллизующихся углеводородов с молекулами различной структуры зависит в основном от строения молекул. Углеводороды с несимметричной, разветвленной структурой характеризуются низкой температурой кристаллизации, а в некоторых случаях вообще неспособны кристаллизоваться. Симметричность молекул и простота их строения способствуют образованию кристаллических структур и повышению температуры плавления углеводородов. Ван-Нес и Ван-Вестен [8] считают, что разветвление молекул оказывает решающее влияние на температуру плавления углеводородов, и отмечают общее правило, что наиболее симметричные молекулы имеют наиболее высокую температуру плавления. Это правило указанные авторы объясняют тем, что чем более симметрична молекула, тем больше имеется способов построить из нее кристаллическую решетку, что согласно статистическим положениям приводит к более высокой температуре плавления. Правило молекулярного веса, указывающее, что температура плавления углеводородов возрастает с их молекулярным весом, может быть подавлено правилом симметрии. [c.40]

    Церезины же вырабатывают из остаточных продуктов нефти с началом кипения не ниже 450—500°, а иногда и выше. В состав церезина входят все наиболее высококипяпще кристаллические углеводороды нефти молекулярного веса от 450—500 и выше. Вследствие высокого молекулярного веса входяпще в состав церезина твердые углеводороды обладают весьма мелкой кристаллической структурой, которая определяет в значительной мере их физические свойства, а также ограничивает возможность достижения высокой чистоты их при обезмасливании. По химической природе входящие в состав церезина углеводороды относятся к тем же гомологическим рядам и группам, к каким относятся углеводороды, составляющие парафин. Но разница заключается в том, что в церезины входят наиболее высококипящие и высокомолекулярные представители этих групп, в то время как члены этих групп, составляющие технический парафин, обладают средними температурами кипения и средними молекулярными весами. Различным является и соотношение количеств углеводородов разных групп, входящих в церезин и в технический парафин. Если в техническом парафине преобладают и-алканы, то в церезине и-алканы содержатся в значительно меньшем относительном количестве и обычно составляют меньшую долю его массы. [c.78]

    Структура углеводорода влияет как на скорость окисления, так и на природу продуктов, причем скорость окисления намного более чувствительна к структуре углеводорода, чем скорость термического крекинга [15, 26]. Мулькэй попарно сравнил максимальные скорости окисления соседних членов гомологического ряда углеводородов при температурах, позволяющих легко измерять увеличение давления в статической систсме [37]. Результаты испытаний для ряда этан — пентан приведены в табл. 1. [c.319]

    Оба стереорегулярных полипентенамера имеют самые низкие температуры плавления в гомологических рядах геометрических изомеров, причем температура плавления ЦПА — самая низкая для регулярно построенных углеводородных эластомеров — в сочетании с очень низкой температурой стеклования должны обеспечивать этому полимеру очень хорошие свойства при низких температурах. Температуру плавления 18 °С, близкую к температуре плавления НК, имеет ТПА. При комнатной температуре он аморфен, однако кристаллизуется при растяжении. Скорость кристаллиза- [c.322]

    Физические свойства этиленовых и ацетиленовых углеводородо в гомологических рядах изменяются с той же закономерностью как и у предельных низшие представители — газы, более слож ные — жидкости, а затем — вещества с постепенно возрастающим температурами плавления и кипения, находящиеся при обычиьи условиях в твердом состоянии. [c.472]

    Недостаток метода обработки и предсказания данных о свойствах азеотропов, образующих полиазеотропную систему,, предложенного Сколником, заключается в сложности определения температуры кипения азеотропа по температурам кипения компонентов. Для того чтобы исключить эти трудности, Деньер, Фидлер и Лоури [87] предложили использовать зависимость температуры кипения членов гомологического ряда от молярной концентрации компонента, общего для полиазеотропной системы. Эта зависимость для каждой полиазеотропной системы является прямой, как показали Маршнер и Кроппер [92] для азеотропов, образуемых парафиновыми углеводородами с бензолом и этанолом. На рис. 29 приводятся данные для систем, образованных тиоспиртами и углеводородами. Как видно и.в рис. 29, для каждой полиазеотропной системы получается линейная зависимость. Аналогичные зависимости для систем, образованных алкилсульфидами, алкилдисульфидами, циклическими сульфидами, тиофенами и углеводородами, представлены на рис, 30. [c.90]

    Основы процесса вакуумной перегонки. Сырье вакуумной перегонки представляет собой сложную смесь органических и гетероорганических соединений разных гомологических рядов. Такое многообразие составляющих компонентов обусла -ливает практически непрерывное выкипание сырья при пов < шении его температуры. [c.33]

    Скрытая теплота кипения, как лидно из этих данных, последовательно уменьшается при переходе от низших членов гомологического ряда с более низкой температурой кипения к высшим, характеризуемым более высокой температурой кипения. [c.60]

    Растворимость индивидуальных углеводородов в различных растворителях швисит от их природы, молекулярного веса и температуры. Та , растворимость их в воде крайне низка. С повышением температуры она возрастает, а в области критических температур снижается. Наибольшей растворимостью в воде обладают диеновые углеводороды, за ними следуют ароматические и олефины. Наимень-В1ую растворимость проявляют парафиновые углеводороды. В одном и том же гомологическом ряду растворимость в воде углеводородов возрастает с увеличением их молекулярного веса. Углеводородные газы растворяются в воде в незначительных количествах. С повышением давления (рис. 39) и понижением температуры (табл. 9) растворимость углеводородных газов в воде повышается, а в присутствии растворенных в воде минеральных солей — понижается. [c.87]

    Одним из неполярных адсорбентов, применяемых при разделении компонентов масляных фракций с целью исследования их структуры, является а1ктивированный уголь. В настоящее время выпускается несколько марок активированных углей, однако для промышленных установок и при исследовании химического состава масляных фракций нефти наибольшее распространение получил активированный уголь маржи БАУ. Этот уголь получают из древесного березового или букового угля-сырца, обрабатывая его водяным паром при высокой температуре. Еще в 40-х годах И. Л. Гуревичем была обнаружена опособность активированного угля адсорбировать парафиновые углеводоро ды нормального строения. Обзор литературного материала, посвященного адсорбционной способности активированного угля [3—б], позволяет сделать заключение о том, что на активированном угле углеводороды разделяются не по гомологическим рядам, а по структуре молекул, причем решающее значение имеет длина >и структура парафиновых цепей. Поверхность активиро ванного угля как нелоляр- [c.260]

    Если расчет свидетельствует о невозможности протекания реакции в данных условиях, т. е. если А0>0, то, разумеется, бессмысленно пытаться ее реализовать. Нонетом случае, когда согласно расчету процесс принципиально осуществим (АОаО), он может не идти из-за каких-либо препятствий на его пути. И таких случаев не мало. Так, например, хотя многие углеводороды неустойчивы в отношении разложения на углерод и водород (см. табл. 7) и их неустойчивость в каждом гомологическом ряду возрастает с увеличением молекулярного веса и при повышении температуры, однако только при высоких температурах [c.98]

    В табл. VI], 30 для углеводородов, принадлежащих к разным гомологическим рядам, в более краткой форме приведены также параметры процесса испарения в равновесных условиях, при стандартных состояниях веществ и 298,15 К. Эти данные показывают, в какой степени ири 298,15 К стандартные значения указанных величин отличаются от их равновесных значений. В таблице приведены также теилоты испарения (АЯщ, а) и изменения энтронии (А5 , а) для нормальной температуры кипения. Для этих температур параметры равновесного процесса отличаются от стандартных значений соответствующих величин только в небольшой степени, зависящей от степени нендеальности пара в этих условиях. [c.304]

    Метод выбора разделяющих агентов с помощью данных о свойствах азеотропных смесей, предложенный Кафаровым и Гор-диевским [44], является дальнейшим развитием идей, лежащих в основе рассмотренных способов выбора разделяющих агентов по данным о температурах кипения, а также предложения Шейбла [23] о применении в качестве разделяющего агента гомолога менее летучего компонента исходной смеси. Это предложение основывается на том факте, что отклонения от идеального поведения в системах, состоящих из членов гомологического ряда, невелики. Поэтому применение гомолога одного из компонентов заданной смеси в качестве разделяющего агента обеспечивает увеличение относительной летучести другого компонента. [c.57]

    При значительном различии температур кипения компонентов может быть рекомендован следующий метод выбора. Подбирается система из двух близкокипящих компонентов, аналогичная заданной. Аналогия должна быть сохранена в характере функциональных групп, поэтому новая система должна подбираться из гомологических рядов разделяемь1х компонентов. К таким образом выбранным компонентам подбирается вещество, образующее азеотропную смесь с минимумом температуры кипения с каждым из них, но с различной величиной понижения температуры кипения. В качестве разделяющего агента для первоначальной смеси принимается либо выбранное вещество, либо его гомолог. [c.58]

    Для сравнительной оценки различных шолиазеотропных систем, особенно при выборе разделяющих агентов для процессов азеотропной ректификации, желательно знать интервал температур членов гомологического ряда, в котором они образуют азеотропы. Эта величина, равная разности абсцисс точек прямой 1 (рис. 27) при х=0 и л =100%, определяется углом наклона этой прямой. Чем он меньше, тем больше интервал температур членов гомологического ряда, образующих азеотропы, и тем, следовательно, больше отклонения от идеального поведения в полиазеотропной системе. Таким образом, наклон прямой 1 может рассматриваться как мера отклонений от закона Рауля. Сравнительная оценка способности различных систем к образо- [c.87]

    Интересно отметить, что во всех случаях температура кипения чистого общего компонента азеотропной системы лежит вблизи точки с абциссой 51 мол. % с отклонением 3%. Точки пересечения прямых линий с ординатами ЛС]=0 и Х2=100% дают минимальную и максимальную температуры членов гомологического ряда углеводородов, образующих азеотропы с рассматриваемым веществом. Определяемый таким образом интервал температур кипения зависит от угла наклона прямых и характеризует степень неидеальности рассматриваемых систем. [c.91]


Смотреть страницы где упоминается термин Температура в гомологических рядах: [c.573]    [c.224]    [c.564]    [c.468]    [c.76]    [c.233]    [c.94]    [c.57]    [c.316]    [c.285]    [c.292]    [c.296]    [c.59]    [c.79]    [c.89]    [c.89]   
Техника лабораторной работы в органической химии (1952) -- [ c.218 ]




ПОИСК





Смотрите так же термины и статьи:

Гомологические ряды

Гомологический ряд



© 2025 chem21.info Реклама на сайте