Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Латексы синтетические устойчивость

    В качестве эмульгаторов применяются калиевые и натриевые соли природных и синтетических жирных кислот и диспропорционированной канифоли, алкилсульфонат натрия и др. Этими эмульгаторами заменяется некаль (натриевая соль дибутилнафталинсульфокислоты), применяющийся в производстве бутадиеннитриль-ных каучуков. Выбор эмульгатора обусловлен его доступностью, способностью обеспечивать необходимую скорость полимеризации, устойчивостью латекса на всех стадиях технологии производства и способностью биологически разлагаться при очистке сточных вод. Применяемые анионоактивные эмульгаторы не оказывают влияния на микроструктуру каучука. Бутадиен-нитрильный каучук СКН-18, полученный при 30°С с применением некаля, алкилсуль-фоната натрия и калиевого мыла синтетических жирных кислот, имеет одну и ту же микроструктуру транс-1,4-звеньев 60,0—63,8%, г с-1,4-звеньев 26,2—30,2% и 1,2-звеньев 8,0—11% [9]. [c.358]


    СТРУКТУРНЫЙ ФАКТОР АГРЕГАТИВНОЙ УСТОЙЧИВОСТИ СИНТЕТИЧЕСКИХ ЛАТЕКСОВ [c.188]

    Латексы являются типичными представителями коллоидных систем, поскольку глобулу полимера с адсорбированным иа нем ионным стабилизатором мож но рассматривать как мицеллу. В то Hte время латексы представляют собой весьма удобную модель для изучения процессов коагуляции. Дисперсная фаза латекса — синтетический полимер, как правило, достаточно химически инертна и в отсутствие стабилизатора не взаимодействует с водой (не гидратирована). Глобулы латекса имеют сферическую форму и представляют собой твердые полимерные частицы. Однако в результате специфических свойств полимера (высокой аутогезионной способности) в латексах возможны явления, подобные коалесценции капелек эмульсии, приводящие к полному или частичному слиянию полимерных частиц. Поэтому латексы сочетают свойства систем с твердой и жидкой дисперсной фазой (золей и эмульсий). Агрегативная устойчивость синтетических латексов обеспечивается адсорбционным слоем поверхностно-активного вещества ионного или неионного характера. [c.108]

    Синтетические латексы представляют собой более высокодисперсные системы, чем натуральный латекс. Частицы синтетических латексов меньше и более однородны по размерам, чем частицы натурального латекса (0,05 мкм в синтетических латексах, 0,15—14 мкм в натуральном). Благодаря высокой дисперсности синтетические латексы обладают рядом преимуществ по сравнению с натуральным латексом большей устойчивостью, лучшей диффузионной способностью и т. д. [c.262]

    Большой интерес представляет применение полимерных структурообразователей для защиты поверхности почвы от эрозии. С этой целью используют, в частности, бутадиен-стирольные латексы (см. Латексы синтетические), образующие пленки, к-рые обладают хорошей адгезией к частицам почвы и стойкостью к старению. Применение латексов в количестве 100— 150 кг га обеспечивает устойчивость почвы к ветровой эрозии при скорости ветра до 25 м сек. [c.475]

    Уд. вес латекса близок к 1 г/сж и колеблется в зависимости от концентрации и плотности самого синтетического каучука. Вязкость меньше вязкости натурального латекса. Синтетический латекс содержит некоторое количество защитных веществ—солей жирных кислот или каких-либо других, применяемых в технике стабилизаторов, которые и обусловливают необходимую устойчивость его как дисперсной системы. Прибавление к синтетическому латексу определенного количества кислот или солей вызывает типичное явление коагуляции каучуковая часть выпадает в осадок в виде плотного и эластичного сгустка или в виде рыхлой, творожистой и даже рассыпающейся массы. Характер коагулянта зависит главным образом от состава исходного каучукообразующего вещества и условий полимеризации. [c.1063]


    Химический состав водной фазы (дисперсионной среды) синтетических латексов сравнительно прост, а дисперсная фаза обычно состоит из достаточно инертного в химическом отношении и в большинстве случаев гидрофобного вещества. Поэтому едва ли можно ожидать, что при астабилизации этих систем на поверхности частиц могут происходить какие-нибудь реакции, за исключением тех хорошо изученных реакций, в которых участвует стабилизатор. У латексов с гидрофобным полимером сольватация дисперсной фазы, которая может влиять на устойчивость коллоидной системы, безусловно, отсутствует. Сферическая или близкая к сферической форма частиц устраняет влияние на их взаимодействие неровностей поверхности и позволяет считать, что при столкновении двух глобул они ведут себя как два идеальных шарика. Дисперсная фаза латексов, как правило, является диэлектриком, и при электрофорезе можно не учитывать поправку на проводимость частиц. Большая вязкость полимеров позволяет рассматривать латексные глобулы как твердые частицы. Это значительно упрощает трактовку экспериментальных результатов, так как такие частицы не могут деформироваться под влиянием движения окружающей жидкости. Наконец, весьма существенно, что синтетические латексы можно получать с применением почти любого эмульгатора. Это представляет огромное удобство для экспериментатора, изучающего влияние на свойства латекса природы стабилизующих веществ. [c.382]

    Эмульсионная полимеризация. Это наиболее распространенный в промышленности способ. Мономер диспергируют в жидкости, нерастворяющей его, и получают эмульсию мономера. В качестве среды для эмульсии обычно используют воду. Для придания эмульсии устойчивости вводят эмульгаторы— поверхностноактивные вещества (различные мыла). Полимеризацию обычно проводят в присутствии инициаторов. В результате полимеризации образуется эмульсия полимера в воде — синтетический латекс. Синтетические латексы применяют непосредственно или выделяют из них полимеры коагуляцией. [c.21]

    Синтетические латексы более устойчивы к механическим воздействиям, чем натуральный латекс. Химическая стабильность синтетических латексов достаточно высока, благодаря чему обеспечивается возможность применения их для составления смесей. [c.512]

    Концентрирование упариванием. При концентрировании синтетических латексов этим способом проявляется его существенное преимущество — одновременное уменьшение содержания в латексе остаточны х мономеров. В отличие от натурального латекса синтетические латексы обычно защищены эмульгаторами, устойчивыми к действию высоких температур, поэтому в процессе упаривания ухудшения коллоидной структуры латекса не происходит. Однако осуществление этого процесса наталкивается на ряд трудностей, основной из которых является способность латекса к образованию пены. Устойчивость пены, образующейся при перемешивании или кипячении латекса, не позволяет использовать обычное выпарное оборудование. Другим затруднением является неустойчивость коллоидной структуры латекса при испарении влаги или при интенсивном механическом воздействии, приводящая к образованию коагулюма. [c.491]

    Выделение каучука из латекса. Агрегативную и кинетическую устойчивость синтетических латексов, учитываемую на всех стадиях технологического процесса их получения и переработки, определяет наличие на поверхности латексных частиц адсорбционного слоя из молекул гидратированного эмульгатора. Свойства межфазной поверхности — адсорбированного слоя гидратированных молекул поверхностно-активных веществ (ПАВ) со структурой, близкой к мицеллярной [26], — определяют устойчивость латекса при транспортировании насосами, при хранении, при выделении каучука из латекса. Специфичность воздействия отдельных факторов на латексы привела к делению агрегативной устойчивости на отдельные виды стабильности — к механическому воздействию, к электролитам, к замораживанию, к тепловому воздействию, к действию растворителей [27], но во всех случаях при нарушении устойчивости происходит снятие или преодоление одного и того же по своей природе стабилизующего барьера [28—30]. [c.255]

    Рассматривая теоретические принципы нарушения агрегативной устойчивости синтетических латексов электролитами, надо иметь в виду, что агрегативная устойчивость этих коллоидных систем обусловливается наличием адсорбционного слоя, который имеет достаточно высокий заряд диффузного ионного слоя ( -потенциал для большинства латексов равен 100- 60 мВ) [32], обеспечивающий стабилизацию таких систем за счет электростатических сил отталкивания, и достаточно высокую степень гидратации, наряду с вязкоупругими свойствами и достаточной механической прочностью. С другой стороны, стабилизация синтетических латексов осуществляется в большинстве случаев ионными ПАВ, у которых при введении электролитов в систему резко меняется растворимость и происходит их высаливание из раствора. [c.255]


    Имеется достаточно оснований утверждать, что структурное отталкивание, обусловленное свойствами граничных гидратных прослоек, во многом определяет агрегативную устойчивость синтетических латексов. К такому заключению приводят данные двоякого рода. [c.189]

    С одной стороны, в результате ряда экспериментальных исследований установлено наличие у поверхности латексных частиц, модифицированной адсорбционными слоями эмульгаторов,, гидратных прослоек, эффективная толщина которых имеет порядок 10 м и зависит от ряда факторов степени насыщения адсорбционных слоев, температуры, содержания электролитов в латексе и др. Однако эти данные сами по себе недостаточны для того, чтобы делать какие-либо выводы о влиянии особых свойств и структуры граничных прослоек водной среды на агрегативную устойчивость синтетических латексов. Как будет здесь показано, к представлению о существовании неэлектростатического фактора стабилизации — структурного отталкивания, обусловленного граничными гидратными прослойками, — приводят результаты исследований кинетики коагуляции латексов [c.189]

    Остановимся на основных итогах этих исследований, с тем чтобы выявить закономерности, характеризующие роль структурного фактора в агрегативной устойчивости синтетических латексов и механизме их коагуляции. [c.194]

    Явление коллоидной защиты нашло широкое практическое применение. Например, оно используется в фармацевтической промышленности при получении колларгола (золя серебра), при стабилизации натурального и синтетических латексов, для создания однородных и устойчивых смесей латекса с наполнителями, пигментами и т. д. [c.116]

    В обзоре современного положения производства резиновых пен из латекса [208] подчеркивается важное значение синтетических латексов. Во многих случаях губчатые резиновые продукты удовлетворительного качества можно получать, применяя чистый синтетический латекс, что устраняет опасность перебоев в снабжении и колебаний цен на латекс натурального каучука. Кроме того, без ухудшения качества в синтетические резиновые пены можно вводить значительные количества дешевых неорганических наполнителей (например, глин). Сравнительно низкая и устойчивая цена синтетического латекса значительно усиливает позиции латексных пен в их конкурентной борьбе с полиуретановыми и другими синтетическими пено-пластами. - [c.213]

    Процесса до его завершения в зависимости от интенсивности коагулирующего воздействия [526, 530]. Этим путем была изучена кинетика коагуляции синтетических латексов электролитами, замораживанием и перемешиванием. В табл. 11.4 охарактеризованы факторы интенсивности коагулирующего воздействия методика измерений и оценки устойчивости приводятся в соответствующих библиографических ссылках. [c.194]

    Исследованиями показано, что устойчивость концентрированных дисперсий, т. е. суспензий или эмульсий с высоким содержанием дисперсной фазы, к которым принадлежат синтетические латексы, обусловлена наличием на поверхности частиц каучука абсорбционных пленок стабилизатора (эмульгатора), являющихся упруго-пластично-вязкими структурированными образованиями. [c.262]

    Эмульсионная полимеризация [2, 3]. Для проведения эмульсионной (латексной) полимеризации мономер предварительно диспергируется в жидкости, практически не растворяющей ни мономер, ни полимер, обычно в воде, и в виде эмульсии подвергается полимеризации. Конечный продукт реакции представляет собой коллоидный раствор полимера, легко коагулируемый обычными методами. Подобные коллоидные растворы благодаря известному сходству с латексом натурального каучука получили название синтетических латексов. Для облегчения эмульгирования мономера и повышения агрегатной устойчивости синтезированных латексов в систему вводятся специальные эмульгаторы (соли высших жирных кислот, мыла, соли органических сульфокислот, синтетические моющие средства или другие поверхностно-активные вещества), действие которых заключается в понижении поверхностного натяжения на границе фаз мономер — вода. Однако роль эмульгатора этим не ограничивается. [c.249]

    Натуральный и синтетические латексы являют собой типичный пример коллоидного состояния полимеров. Важное место в коллоидной химии латексов занимает проблема их агрегативной устойчивости и коагуляции. При коагуляции разрушается коллоидная система, и каучук выделяется из латекса в макроскопическом состоянии. Во многих случаях каучук образует при этом пленки различной толщины. Пленки часто бывают многокомпонентными и сложными по составу. В тех случаях, когда латекс — полупродукт производства, коагулируют его в крупных масштабах в промышленности синтетического каучука. Выделяющийся из латекса каучук образует хлопья или зерна, быстро сливающиеся в сплошной каучуковый монолит. Сформованный в брикеты или ленты каучук поступает, например, в шинную промышленность. [c.5]

    Агрегативная устойчивость синтетических латексов обусловлена-существованием на поверхности латексных частиц— глобул адсорбционного слоя поверхностно-активного вещества. От состояния и свойств этого СЛОЯ зависят условия взаимодействия латексных частиц. Нарушение устойчи- [c.5]

    Способность системы сохранять дисперсность во времени при отсутствии внешних астабнлизующих воздействий далеко не исчерпывает требований к устойчивости синтетических латексов. В отличие от латексов — полупродуктов эмульсионных каучуков, которые должны сохранять устойчивость лишь на стадиях полимеризации и отгонки незаполимеризовавшихся мономеров, товарные латексы подвергаются в процессе их получения и переработки ряду дополнительных специфических воздействий механических [8—12], замораживанию-оттаиванию [13—16], испарению влаги с поверхности и в объеме [8, 17, 18], а также в латексы вводят электролиты [9, 19—24], наполнители, неионные эмульгаторы в качестве стабилизаторов [23, 25—28]. 6о многих случаях требуется ограниченная устойчивость к одним и высокая — к другим коагулирующим воздействиям. Например, при проведении процесса агломерации частиц латекс должен обладать лишь ограниченной устойчивостью к агломерирующим воздействиям, препятствующей макрокоагуляции этот же латекс в процессе дальнейшей переработки при получении на его основе пенорезины должен обладать высокой устойчивостью к механическим воздействиям, но ограниченной устойчивостью к действию специфических химических агентов — латекс должен быстро желатинировать. (Иногда желательно даже, чтобы латекс желатинировал при повышенной температуре без введения специальных агентов. Такой процесс положен, например, в основу одного из способов получения пенорезинового подслоя при производстве ковров.) [c.588]

    Частицы синтетических латексов имеют, как правило, сферическую или близкую к ней форму. В ряде случаев в устойчивых латексах образуются вторичные частицы — гроздья слипшихся, но не коалесцировавших (т. е. не слившихся) первичных глобул. На рис. 1 приведены некоторые типичные электронные микрофотографии синтетических латексов. [c.6]

    Широко используют все виды ПАВ при получении и применении синтетич. полимеров. Важнейшая область потребления мицеллообразующих ПАВ — производство полимеров методом эмульсионной полимеризации. От типа и концентрации выбранных ПАВ (эмульгаторов) во многом зависят технологич. и физико-химич. свойства получаемых латексов (см. Эмульсионная полимеризация, Латексы синтетические). ПАВ (гл. обр. высокомолекулярные) применяют также для облегчения концентрирования каучуковых латексов методом сливкоотделения, для повышения агрегативной устойчивости натурального или синтетич. латекса. Иногда в латекс с целью его сенсибилизации, т. е. увеличения чувствительности к действию коагулирующих факторов, вводят ПАВ, ослабляющие защитное действие стабилизаторов. ПАВ используют также при суспензионной полимеризации. Обычно применяют высокомолекулярные ПАВ — водорастворимые полимеры (поливиниловый спирт, производные целлюлозы, растительные клеи и т. п.). ПАВ как обязательные компоненты содержатся в водных дисперсиях полимеров, получаемых механич. диспергированием или путем образования новой полимерной фазы из пересыщенного р-ра. Смешением лаков или жидких масляносмоляных композиций с водой в присутствии эмульгаторов получают эмульсии, применяемые при изготовлении пластмасс, кожзаменителей, нетканых материалов, импрегнированных тканей, водоразбавляемых красок и т. д. [c.337]

    Бутадиен-акрилонитрильные латексы обеспечивают устойчивость нетканых материалов к химической чистке, хорошую прочность в сочетании с целлюлозным и синтетическими волокнами. Типичным является связующее следующего состава (к весу сухой части) 80% бутадиен-акрилонитрильного латекса, 20% латекса поливинилхлорида. Увеличение содержания поливинилхлорида увеличивает жесткость ткани, ее прочность к мокрой и сухой обработке. Для уменьшения вспенивания в этг. композиции добавляют кремнийорганические антивспениватели, для повышения стойкости к растворителям вводят отвердители (окись цинка, сера) в сочетании с ускорителями (дитиокар бамат, меркаптобензотназол), для смачиваний волокна — поверхностно-активные вешества. Могут вводиться также пластификаторы (дикаприлфталат н др.). Для улучшения распределения добавок вводится казеинат аммония или другие диспер-гаторы. Связующие этого типа применяют для найлона и его смесей с другими волокнами. [c.352]

    По-видимому, перспективной областью применения синтетических латексов является приготовление высоконаполненных латексных композиций различного назначения. Для достижения равномерного распределения полимера в таких композициях требуется придать латексу устойчивость для избежания преждевременной коагуляции в процессе смешения его с вяжущими матёриалети в том числе содержащими поливалентные ионы. Такой устойчивостью обладают латексы, содержащие НПАВ. Они смешиваются без коагуляции с 400% (масс.) гипса, обеспечивая получение материалов с резко (в 3—4 раза) повышенными прочностными показателями и уменьшенной пористостью и воздухопроницаемостью. [c.611]

    Нейман с сотрудниками, применяя нефелометрический и электронномикроскопический методы для исследования кинетики коагуляции различных латексов под действием злектролитов, показали, что коагуляция адсорбционно-насыщенных латексов протекает в две стадии. Первоначальные контакты между частицами возникают по не.защищенным эмульгатором участкам поверхности, и адсорбционная насыщенность глобул увеличивается. В связи с этим, по мнению указанных авторов, возникает дополнительный потенциальный барьер, связанный со структурой и свойствами поверхностных насыщенных адсорбционно-гидратных слоев эмульгатора, что приводит к замедлению коагуляции — начинается ее вторая стадия. У адсорбционно-насыщенных латексов первая стадия коагуляции отсутствует. Обширные исследования в этой области позволили заключить, что агрегативная устойчивость синтетических латексов, полученных на ионогённых эмульгаторах, определяется наличием и совместным действием двух защитных факторов на первой стадии преимущественную роль играет ионно-электростатический фактор стабилизации, на второй — фактор, имеющий неэлектростатическую природу. [c.14]

    Прочность связи резин с необработанными химическими волокнами, такими как вискозное, полиамидное и полиэфирное волокно, очень мала. Для повышения аги езии между волокнами и эластомерами волокна рекомендуется обрабатывать пропиточными составами. Полиамидные волокна обычно обрабатывают латексно-смоляными пропиточными составами на основе натурального латекса или водных дисперсий синтетических эластомеров. В процессе ва (ьцевания полиамидное волокно, обладающее высокой гибкостью и усталостной выносливостью, проявляет высокую устойчивость к измельчению. [c.180]

    Латексы являются полидисперсными системами. Вследствие малого размера частиц и небольшой разницы в плотностях дисперсной фазы и серума синтетические латексы обладают высокой седи-ментационной устойчивостью. Латексы, стабилизованные обычными мылами, имеют отрицательно заряженные частицы и агрегативно устойчивы в щелочной среде. Для них, как и для эмульсий, стабилизованных солями ншрных кислот, соблюдается правило Шульце — Гарди. Латексы, содержащие поверхностно-активные вещества, в молекуле которых имеется сульфо-группа, устойчивы и в щелочной, И В КИСЛОЙ среде, поскольку сульфокислоты являются сильными электролитами. [c.27]

    Сравнительное изучение типичных коллоидов и высокомолекулярных веществ показало принципиальное различие ряда их свойств. Как уже было указано, типичными свойствами коллоидных систем являются гетерогенность, поверхность раздела фаз, агрегативная и термодинамическая неустойчивость, необратимость. В противоположность типичным коллоидным системам работами Каргина и его сотрудников было показано, что растворы высокомолекулярных веществ — термодинамически обратимые молекулярные гомогенные (однофазные) системы, агрегативно устойчивые без стабилизаторов. Сами высокомолекулярные вещества отличаются способностью к самопроизвольному растворению при соприкосновении с хорошими растворителями, а растворы получаются устойчивыми и без стабилизатора. В этом отношении высокомолекулярные вещества стоят ближе к веществам, образующим истинные растворы. Однако в плохих растворителях или в нерастворяющей среде высокомолекулярные вещества способны давать дисперсии со свободными поверхностями раздела. Эти дисперсии по своим свойствам относятся к типичным микрогетерогенным и коллоидныр системам (например, синтетический латекс и дисперсии полимеризационных смол). [c.18]

    В натуральном латексе частицы каучука (глобулы) защи-ш,ены адсорбционным слоем белковых веществ и поэтому обладают достаточно высокой устойчивостью. Синтетические латексы представляют собой дисперсии, в которых частицы каучуковых углеводородов защищены адсорбционным слоем мыла пли другого стабилизатора. Размеры частиц в синтетических латек-сах обычно меньше, чем в натуральных, и колеблются в пределах 50—200 ммк. Коагулируя латекс, промывая и просушивая, получают каучук. Коагуляцию синтетического латекса можно вызвать, добавляя к нему электролиты, особенно с поливалентными катионами (частицы латекса обычно заряжены отрицательно). [c.204]

    Синтетические латексы представляют собой водные дисперсии соответствующих синтетических каучуков и по основным коллоидно-химическим свойствам аналогичны натуральному л атексу. Частицы каучука в < иитетических латексах имеют отрицательный заряд под действием электролитов происходит коагуляция синтетических латексов. Вязкость латексов зависит от их концентрации и размера частиц. При достижении концентрации выше определенной, характерной для данного латекса, вязкость его резко повышается. Вместе с тем синтетические латексы имеют и существенные отличия от натурального. Частицы синтетических латек-соБ в среднем меньше и более однородны по размерам, чем частицы натурального латекса. Малый размер частиц каучука в синтетических латексах является причиной их более высокой механической устойчивости, вследствие чего они менее подвержены отстаиванию и расслаиванию, чем натуральный латекс. Малый размер частиц каучука в синтетических латексах облегчает проникновение каучука в ткань при пропитке. [c.117]

    Эмульгаторы оказывают особенно большое влияние на свойства синтетического латекса. Концентрация и природа эмульгаторов, способ их введения в реакционную смесь при полимеризации, а также добавки неорганических электролитов определяют величину частиц каучука в латексе, устойчивость лЭтекса к тепловым и механическим воздействиям, стойкость при разбавлении и свойства получаемых пленок. Чем меньше эмульгатора содержит латекс, тем ниже его устойчивость. Вместе с тем уменьшение содержания эмульгатора в полимеризационной системе приводит к увеличению размера частиц каучука в латексе, к повышению прочности пленки и увеличению скорости ее высыхания. [c.117]

    Коллоидные системы, дисперсные системы с частицами дисперсной фазы от 10 до 10 см. Коллоидные частицы, участвуя в интенсивном броуновском двих<ении, противостоят седиментации (оседание частиц на дно) в поле сил земного тяготения и сохраняют равномерное распределение по объему дисперсионной среды. Наиболее важны и многообразны коллоидные системы с жидкой дисперсионной средой. Их делят на лиофильные и лиофобные. В первых частицы дисперсной фазы интенсивно взаимодействуют с окружающей жидкостью, поверхностное натяжение на границе фаз очень мало, вследствие чего эти коллоидные системы термодинамически устойчивы. К лиофильным коллоидным системам относят мицеллярные (мицелла - коллоидная частица), растворы ПАВ (поверхностно активные вещества), растворы некоторых высокомолекулярных веществ, органических пигментов и красителей, критических эмульсий (образующиеся вблизи критической температуры смешения двух жидких фаз), а также водные дисперсии некоторых минералов. В лиофобных коллоидных системах частицы слабо взаимодействуют с дисперсионной средой, межфазное натяжение довольно велико, система обладает значительным избытком свободной энергии и термодинамически неустойчива. Агрегативная устойчивость лиофобных коллоидных систем обычно обеспечивается присутствием в системе стабилизирующего вещества, которое адсорбируется на коллоидных частицах, препятствуя их сближению и соединению (коагуляции - образованию агрегатов). Типичные лиофобные коллоидные системы - золи металлов, оксидов и сульфидов, латексы (водные дисперсии синтетических полимеров), а также гели (структурированные коллоидные системы с жидкой дисперсионной средой), возникающие при коагуляции и структурировании золей. [c.116]

    Полимерные латексы представляют собой устойчивые взвеси в воде сферических полимерных глобул (латексных частиц) диаметром, от 0,05 до 2 мкм (для эмульсионного ПВХ 0,05- 0,15, для микросуспенэи-онного - 0,2 - 2 мкм), которые значительно крупнее частиц коллоидных растворов, но существенно мельче частиц обычных суспензий или расслаивающихся взвесей. Полимерные частицы в зависимости от температуры перехода в высокоэластическое (Г < 0 < Г ) или вязкотекучее (0> 7/) состояние и температуры среды могут образовывать жесткую или эластичную корку на поверхности капли латекса. Кроме Того, в водной фазе содержится растворенный эмульгатор - высокомолекулярное соединение типа синтетического мыла (натриевые или Калиевые соли жирных кислот, сульфонаты, алкилсульфонаты и т.п.), т.е. при упаривании водная фаза может постепенно трансформироваться в Коллоидный раствор. Таким образом, латексы одновременно Обладают свойствами суспензий и коллоидных растворов, и структурные превращения при их сушке могут идти по любому из рассмотрен- Ых механизмов. [c.119]

    Недавно получил распространение сополимер бутадиена и стирола (СбНз-СН СНа), так называемый буна-8 , отличающийся высокой устойчивостью в отношении истирания и тепла и особенно подходящий для производства шин. Бутадиен сополимеризует-ся также с акрплнптрилом, СНз = СН — С = N, в водной эмульсии, образуя синтетический латекс, из которого получается бу -на-М , или пербунан . Продукты этого рода имеются разного качества, повидимому, различающиеся по соотношению мономеров, а мон< ет быть, и по механизму полимеризации. Они обладают высоким сопротивлением на истирание, теплостойкостью, устойчивы в отношении растворителе , медленно стареют, но плохо вальцуются вследствие твердости и обладают низким сопротивлением на разрыв. Однако при введении сажи сопротивление возрастает до значений, нревосходяпщх сопротивление на разрыв каучука. [c.444]


Смотреть страницы где упоминается термин Латексы синтетические устойчивость: [c.339]    [c.244]    [c.244]    [c.194]   
Основы технологии синтеза каучуков (1959) -- [ c.515 ]




ПОИСК





Смотрите так же термины и статьи:

Латекс синтетический

Латексы



© 2025 chem21.info Реклама на сайте