Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магния галлия

    Фотометрия пламени — вид эмиссионного спектрального анализа, в котором источниками возбул<дения спектров являются пламена различных видов ацетилен — воздух, ацетилен — кислород, пропан — воздух, пропан — кислород, водород — воздух и др. Вследствие невысокой температуры в пламенах излучают легко и среднеионизующиеся элементы щелочные и щелочноземельные металлы, галлий, индий, магний, марганец, кобальт, медь, серебро и ряд других, причем их число растет с увеличением температуры пламени. В наиболее холодных пламенах, таких как, например, пропан — воздух, светильный газ — воздух излучают только атомы щелочных и щелочноземельных металлов. Вследствие невысокой температуры спектры, излучае-МЕле пламенами, состоят из небольшого числа спектральных линий, главным образом резонансных, что позволяет выделять характеристическое излучение элементов при помощи светофильтров и использовать простые и имеющие невысокую стоимость спектральные приборы — пламенные фотометры. Кроме атомных спектральных линий в спектрах пламен присутствуют полосы ряда в основном двухатомных молекул и радикалов С2, СиС1, СаОН и др. Некоторые из них используют в аналитических целях. Так, в случае элементов, образующих термически устойчивые оксиды, которые практически не диссоциируют в пламенах с образованием свободных атомов, молекулярные спектры являются единственным источником аналитического сигнала. Практически не атомизируются в низкотемпературных пламенах оксиды скандия, титана, лантана и других элементов, ирлеющих относительно невысокие потенциалы ионизации. Наиболее часто фотометрию пламени применяют для определения щелочных и щелочноземельных металлов. [c.35]


    Прямым комплексонометрическим титрованием можно определять многие ионы металлов магния, кальция, стронция, бария, скандия, иттрия, лантаноидов, титана, циркония, гафния, тория, ванадия, молибдена, урана, марганца, железа, кобальта, никеля, меди, серебра, цинка, кадмия, ртути, галлия, индия, таллия, свинца, висмута. Скачок кривой титроваиия при этом находят с помощью подходящего индикатора или физико-химического метода. Если титруемый раствор содержит несколько ионов металлов и реальные константы устойчивости соответствующих комплексонатов мало отличаются между собой, эти ионы титруются вместе. Когда логарифмы реальных констант отличаются более чем на 4 единицы, ионы металлов можно титровать последовательно, допустив при нахождении первого скачка погрешности, не превышающие 1%. На практике это условие выполняется довольно редко и возможности прямого комплексонометрического титрования обычно расширяют маскированием. [c.225]

    Отдельные тома серии Аналитическая химия элементов будут выходить самостоятельно, по мере их подготовки. Вышли в свет монографии, посвяш,енные торию, таллию, урану, рутению, молибдену, калию, бору, цирконию и гафнию, кобальту, плутонию, бериллию, прометию, технецию, астатину и францию, радию, ниобию и танталу, протактинию, кремнию, магнию, галлию, фтору, алюминию, селену и теллуру, никелю, РЗЭ и иттрию, нептунию, трансплутониевым элементам, платиновым металлам, золоту, германию, рению, фосфору, кадмию. Готовятся к печати монографии по аналитической химии кальция, лития, ртути, рубидия и цезия, серебра, серы, углерода, олова, цинка. [c.4]

    Азот. . , Алюминий Аргон. . Барий. Бериллий. Бор. . , Бром. . Ванадий. Висмут. . Водород. Вольфрам Галлий. , Гелий. . Железо, Золото. . Индий. . Иод. . . Иридий Кадмий. Калий. . Кальций, Кислород Кобальт Кремний Криптон. Ксенон. . Лантан. . Литий. . Магний Марганец Медь. . . Молибден Мышьяк. Натрий. . Неон. . . Никель. , Олово. Осмий. . Палладий Платина Радий. Радон. Рений. Родий. . Ртуть. . Рубидий,  [c.285]

    Получение галия высокой чистоты. Получаемый вышеописанными методами галлий содержит переменное количество примесей, в том числе цинк, алюминий, кремний, железо, медь, магний, свинец, олово и др. Особенно много примесей (до 5% и более) содержится в галлии, полученном амальгамным способом [108]. Так как для многих областей применения, в особенности для полупроводниковой техники, требуется галлий высокой чистоты, полученный металл всегда рафинируют. [c.264]

    При переходе к четвертому периоду сначала наблюдается возрастание значений потенциалов. Так, калий имеет стандартный потенциал —2,92 В, т. е. больше, чем натрий кальций —2,87 В, т. е. больше, чем магний, и т. д. Но начиная с галлия потенциалы становятся меньшими, чем у соответствующих элементов третьего периода. Это объясняется влиянием заполненной оболочки Зй -электронов, [c.89]


    В главную подгруппу И1 группы входят алюминий, бор, галлий, индий и таллий. Положение алюминия в периодической системе хорошо согласуется с его амфотерностью. В самом деле, с одной стороны, алюминий расположен в периоде на границе между типичным металлом магнием и неметаллом кремнием. С другой стороны, алюминий в группе находится между бором и остальными элементами, для которых более характерны металлические свойства. Бор относится к неметаллам, его гидроксид Н3ВО3 (борная кислота) обладает только кислотными свойствами. Гидроксиды галлия, индия и таллия диссоциируют преимущественно по основному типу, а для таллия известен гидроксид Т10Н, который является силь-ным основанием. [c.267]

    Б периоде слева направо энергия ионизации в общем возрастает, восстановительная активность (способность терять электроны) уменьшается. Наблюдающиеся небольшие отклонения обусловлены устойчивостью наполовину или полностью заполненных подуровней. У бериллия и магния заполнены 2з- и 35-подуровни, у азота и фосфора наполовину заполнены 2р- и Зр-подуровни эти элементы имеют энергию ионизации больше, чем следующие за ними. Появляющийся во внешнем р-подуровне один электрон у бора, алюминия, галлия, индия и таллия легче отрывается, чем электрон у предшествующих им элементов. Повышенные потенциалы ионизации цинка, кадмия и ртути — следствие того, что у них достроен внешний з-подуровень и полностью заполнен предпоследний подуровень й ( ). [c.80]

    Чувствительность определения (в %) алюминия, железа, магния, галлия и висмута— ЫО" серебра, меди и марганца — 3-10 кальция, сурьмы и циркония — I 10 свинца, хрома, олова, никеля и титана — 3- Ю . [c.27]

    При образовании некоторых, сульфидов и их аналогов (например, щелочных и щелочноземельных металлов, магния, цинка) выделяется много теплоты, реакция протекает очень бурно, и ампула, особенно стеклянная, разрушается. Поэтому металл следует брать не в виде тонкого порошка, а в виде стружки, мелких гранул или крупки. Щелочные и щелочноземельные металлы и некоторые другие разрушают стекло и загрязняют продукты реакции соединениями кремния. Поэтому их сульфиды получать таким способом нельзя. Этим методом можно получать сульфиды, селениды элементов подгруппы железа, хрома, ванадия, титана, галлия, а также меди, серебра, марганца. В тех случаях, когда вещество пе плавится, обычно после 1—2-часового нагревания прп температуре, рекомендованной в прописях, оно будет неоднородно по составу. Рекомендуется ампулу разбить, вещество растереть в ступке, снова поместить в ампулу, запаять ее, а затем назревать в течение 2—3 ч (можно еще раз не нагревать, но тогда процесс должен длиться 10—15 ч). [c.47]

    Нитридный метод. Галлий с азотом не реагирует даже при очень высокой температуре, с аммиаком же образует нитрид только при 900° С. В то же время щелочные и щелочноземельные металлы, железо, алюминий и другие примеси реагируют с азотом или аммиаком при более низкой температуре. Нитриды меди, цинка и кадмия образуются с трудом и легко разлагаются. Рафинируют галлий аммиаком или смесью аммиака с азотом. Мелкие галлиевые капельки пропускают через вертикальную трубу, нагретую до 800°. Этим самым избегают соприкосновения галлия с горячими стенками сосуда. Цикл очистки повторяют 15 —20 раз. При этом достигается высокая степень очистки от примесей железа, титана, алюминия, в меньшей степени от магния, цинка и т. д. Эти примеси накапливаются в нитридном шлаке и в налете на стенках реакционного сосуда [122]. [c.268]

    Кислотно-щелочная обработка. Способ основан на сравнительно медленном взаимодействии галлия с кислотами и щелочами, в то время как присутствующие в металле примеси растворяются гораздо быстрее. Соляная кислота хорошо удаляет примеси, имеющие более отрицательный нормальный потенциал, чем галлий, такие, как алюминий, магний, цинк [108]. Примеси железа, меди, никеля и т. п. удаляют азотной кислотой. Обработка щелочью рекомендуется для удаления титана, свинца, цинка. Кислотно-щелочная обработка снижает содержание примесей в галлии до 0,01 % и менее. Но она связана с потерями галлия, тем большими, чем больше содержание примесей в исходном металле [109]. [c.264]

    Хлоридные методы. Наряду с кристаллофизическими методами очистки галлия предложен ряд других методов тонкого рафинирования. Наиболее перспективна, по-видимому, очистка галлия через его хлорид. Путем простой дистилляции ОаС1з можно очистить от малолетучих хлоридов меди, магния, свинца и т. д. Ректификация позволяет очистить его от более летучих хлоридов железа, кремния, германия, олова и в меньшей степени алюминия [115]. Хорошая очистка трихлорида достигается зонной плавкой. Такие примеси, как медь, железо. [c.266]

    Взаимодействие с металлами. Индий, как и галлий, не образует ни с одним металлом непрерывных твердых растворов. Большой растворимостью в индии в твердом состоянии обладают все металлы, окружающие его в периодической системе галлий, таллий, олово, свинец, висмут, кадмий, ртуть, в меньшей мере — цинк. Кроме того, большой растворимостью в индии обладают магний и литий. Сам индий образует твердые растворы на основе металлов подгруппы меди, а также никеля, марганца, палладия, титана, магния, олова, свинца и таллия. Ограниченная растворимость в жидком состоянии обнаружена в системах индия с алюминием, железом и бериллием. [c.297]


    Определение скаидия при помощи ксиленолового оранжевого проводят при рИ 1,5. В 5ти условиях не мешают нойы щелочноземельных элементов, лантана, празеодима, неодима, самария, церия (П1), иттрия, цинка, кадмия, алюминия, марганца, железа (И). Поэтому метод можно применять для фотометрического определения скандия в металлическом магнии и магниевых сплавах без отделения компонентов сплава. Мешают ионы циркония, тория, галлия и висмута, образующие с ксиленоловым оранжевым окрашенные соединения. Соединения железа (П1) и церия (IV) предварительно восстанавливают аскорбиновой кислотой. [c.373]

    Таким образом, намечается постепенный переход от металлоподобных гидридов через гидриды меди, цинка и их аналогов к полимерным гидридам, а от последних, в свою очередь, через летучие димерные гидриды бора и галлия к летучим характеристическим водородным соединениям. В то же время полимерные гидриды бериллия, магния и алюминия генетически связаны и с солеобразными гидрид.чми щелочных и щелочно-земельных металлов. [c.271]

    Вслед за Тилем и Экелем [44] отрицательный дифференц-эффект был обнаружен и другими исследователями для большого числа металлов — бериллия, магния, галлия, индия, цинка, кадмия, железа, таллия и многих других. [c.20]

    Магнитные свойства простых веществ также обнаруживают периодическую зависимость от порядкового номера элемента (рис. 126), но закономерности, которым подчиняется эта зависимость, требуют пояснения. В стандартных условиях простые вещества находятся в разном агрегатном состоянии. Все газообразные и жидкие простые вещества являются диамагнитными. Единственным исключением является кислород, парамагнетизм двухатомной молекулы которого объясняется с позиций метода МО. Сложнее обстоит дело с кристаллическими веществами. Магиитные свойства крист аллов определяются главным образом тремя вкладами диамагнетизмом атомного остова, орбитальным диамагнетизмом валентных электронов и спиновым парамагнетизмом. У неметаллов, в кристаллах которых доминирует ковгшентная связь, вклад спинового парамагнетизма пренебрежимо мал, поэтому все они диамагнитны. Парамагнитными свойствами обладают все переходные металлы с недостроенными и /оболочками, щелочные, щелочно-земельные металлы и магний, а также алюминий. -Металлы с заполненными внутренними оболочками (подгруппы меди и цинка) диамагнитны, так как у них спиновый парамагнетизм не перекрывает двух диамагнитных составляющих (орбитального диамагнетизма валентных электронов и диамагнетизма атомного остова). По той же причине диамагнитными свойствами обладают металлы подгруппы галлия, олово и свинец. [c.248]

    Азот N, алюминий А1, барий Ва, бериллий Ве, бор В, ером Вг, водород И, галлий Оа, германий Ое, железо Ре, ЛОТО Аи, иод I, кадмий СЛ, калий К, кальций Са, кислород кремний 81, литий и, магний М , марганец Мп, медь Си, ч ышьяк Л.s. натрий N3, олово 8п, ртуть Hg, рубидий КЬ, < пинец РЬ, селен 5е, сера 8, серебро Ag, стронций 8г, теллур Те, угле1Х)Д С, фосфор Р, фтор Р, хлор С1, хром Сг, цезий Сз, [c.8]

    Галль (1928) получил оксид серы (И) SO пропусканием паров тионил-хлорида над металлическим магнием или тонко измельченным серебром с выходом до 80%. При этом четырехвалентная сера восстанавливаётся в двухвалентную  [c.568]

    Металлический галлий — голубовато-белый металл. Имееет удивительно низкую температуру плавления — всего +29,78°С, в то время как температура его кипения равна 2237°С. Благодаря этой особенности галлий применяют для изготовления высокотемпературных термометров. Другая интересная особенность этого металла — способность его образовать сплавы со многими другими металлами — магнием, алюминием, свинцом, висмутом, цинком, индием, оловом, таллием, кадмием и др., имеющими низкие температуры плавления. Соединения галлия с мышьяком, сурьмой, фосфором являются полупроводниками. Их применяют в производстве транзисторов и солнечных батарей. [c.159]

    Когда образуется твердый раствор на базе химического соединения, например арсенида галлия, атомы магния или кадмия замещают атомы галлия, но не мышьяка атомы фосфора, селена и теллура,наоборот, замещают атомы мышьяка, но не галлия. Возможность такого замещения сильно зависит от типа связи, от размеров и ЭО атомов заместителей и замещаемых. В решетках соединений типа А" Б связи между атомами ковалентные полярные, и неметаллические атомы замещают атомы В, а металлические атомы замещают атомы А. В этих решетках атомы А не замещаются атомами В и наоборот однако в решетках с металлическими связями между атомами подобные замещения возможны. Например, в, интерметаллическом соединении Al o возможно частичное замещение атомов алюминия (г = 1,43 А) атомами кобальта (г — 1,25 А) и наоборот. В результате образуются твердые растворы на базе этого соединения состава Ali t oi ) или [c.144]

    Общая характеристика. Эти элементы редкие, за исключением алюминия, на долю которого приходится 8,8% массы земной коры (третье место — за кислородом и кремнием). Во внешнем электронном уровне их атомов по три электрона а в возбужденном состоянии Проявляют высшую валентность 111 Э2О3, Э(ОН)з, ЭС1з и т. д. Связи с тремя соседними атомами в соединениях типа ЭХд осуществляются за счет перекрывания трех гибридных облаков поэтому молекулы имеют плоское трехугольное строение, дипольный момент нуль. Из-за того, что в атомах галлия, индия и таллия предпоследний уровень содержит по 18 электронов, алюминия 8 и бора 2, нарушаются закономерные различия некоторых свойств при переходе от алюминия к галлию температур плавления элементарных веществ, радиусов атомов, энтальпий и свободных энергий образования оксидов, свойств гидроксидов и пр. (табл. 23). Таков же характер изменения различий при переходе от магния к цинку. [c.279]

    На основе периодического закона и периодической системы Д. И. Менделеев пришел к выводу о существовании новых, не открытых еще в то время элементов свойства трех из них он подробно описал и дал им условные названия — экабор, экаалюминий и экасилиций . Все три элемента были еще при жизни Д. И. Менделеева открыты и получили названия галлий, скандий и германий. Свойства каждого элемента Д. И. Менделеев определял, исходя из свойств атомоанало-гов — так он назвал элементы, окружающие данный элемент. Атомная масса элемента, например магния, вычислялась как среднеарифметическое атомных масс атомоаналогов, т. е. [c.47]

    Галлий может заменять ртуть в выпрямителях электрического тока (галлиевые выпрямители обладают при тех же размерах большей мош,ностью). Галлиевые лампы (галлий с добавкой цинка, кадмия или алюминия) дают свет, более богатый синими и красными лучами по сравнению с ртутными лампами [80]. У галлия хорошая отражательная способность (88%), что используется в производстве оптических зеркал специального назначения. Окись галлия применяется в стеклах с высоким показателем преломления и другими специфическими свойствами [80]. Некоторые интерметаллические соединения галлия, например УзОа, обладают сверхпроводимостью при сравнительно высокой температуре (до 14,5°К), что облегчает практическое использование этого свойства, например, в сверхпроводящих электромагнитах [80]. Предложено добавлять галлий в качестве легирующей присадки к магнию и к сплавам на магниевой основе для увеличения их прочности, твердости и ковкости. Сплавы, содержащие галлий, предложены для зубоврачебной техники [8П. [c.246]

    Несколько отличается от остальных водородных соединений группа так называемых полимерных гидридов. К ним относятся гидриды бериллия, магния, алюминия (ВеНг) , (MgH2)г, (А1Нз)1. Это твердые вещества, термически распадающиеся на элементы соответственно при 100, 300 и 100°С. Близки к ним по свойствам гидриды меди, серебра, цинка и кадмия, а также твердые гидриды фосфора (РН)г. Гидриды бора ВгНе и галлия Оа2Нв представляют собой летучие димеры, в обычных условиях газообразные или жидкие. [c.271]

    Третий этап работы Д. И. Менделеева был завершающим. На основе периодического закона и периодической системы он сделал правильные логические выводы, а именно предсказал новыё, не открытые в то время элементы. Свойства трех элементов Д. И. Менделеев подробно описал и дал им условные названия — экабор, экаалюминий и экасилиций . После открытия эти элементы назвали галлий, скандий и германий. Свойства каждого элемента он определял, исходя из свойств атомоаналогов. Таким термином Д. И. Менделеев называл элементы, окружающие данный элемент. В этом случае атомный вес, например магния, равен среднеарифметическому атомных весов атомоаналогов, т. е. [c.184]


Смотреть страницы где упоминается термин Магния галлия: [c.50]    [c.211]    [c.266]    [c.42]    [c.64]    [c.346]    [c.125]    [c.360]    [c.360]    [c.17]    [c.282]    [c.38]    [c.160]    [c.241]    [c.229]    [c.266]    [c.280]    [c.360]    [c.99]    [c.300]   
Аналитическая химия мышьяка (1976) -- [ c.194 , c.199 ]




ПОИСК





Смотрите так же термины и статьи:

Галлай

Галлий

Галлы



© 2025 chem21.info Реклама на сайте