Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Галлий очистка

    Германий обладает полупроводниковыми свойствами и с этим связано его основное применение. Германий, идущий для изготовления полупроводниковых приборов, подвергается очень тщательной очистке. Она осуществляется различными способами. Один из важнейших методов получения высокочистого германия — это зонная плавка (см. разд. 11.3.4). Для придания очищенному германию необходимых электрических свойств в него вводят очень небольшие количества определенных примесей. Такими примесями служат элементы пятой и третьей групп периодической системы, например, мышьяк, сурьма, алюминий, галлий. Полупроводниковые приборы из германия (выпрямители, усилители) широко применяются в радио- и телевизионной технике, в радиолокации, в счетно-решающих устройствах. Из германия изготовляют также термометры сопротивления. [c.421]


    Кристаллофизическая очистка дает возможность получить галлий высокой чистоты. Так, из металла чистотой 99,99% можно получить галлий чистотой 99,999% и выше. При очистке методом вытягивания, чтобы получить достаточно чистый металл, требуется 4—5 кристаллизаций [114]. [c.266]

    Кристаллофизическая очистка галлия. [c.265]

    Зонная плавка — один из методов разделения и очистки веществ. Метод основан на неодинаковой растворимости примесей в твердой и жидкой фазах очищаемого металла. При 3. п. тигель специальной формы со слитком очищаемого металла передвигают с весьма малой скоростью через печь. При этом происходит расплавление небольшого участка (зоны) металла, находящегося в данный момент в печи. По мере перемещения тигля зона жидкого металла передвигается от одного конца слитка к другому. Примеси, содержащиеся в металле, собираются в зоне плавления, перемещаются вместе с ней и после окончания плавки оказываются в конце слитка. Этим методом очищают от примесей германий, кремний, олово, алюминий, висмут и галлий. [c.53]

    В зависимости от чистоты анализируемого галлия в чашку предварительно вносят 50 или 10 мг угольного порошка, содержащего 10°/о Ga и 0,01%,Со (внутренний стандарт), упаривают на водяной бане досуха, а затем <высушивают в сушильном шкафу при температуре не выше 105° С. Одновременно с пробой подготавливают холостой опыт, проводя его через все стадии анализа в присутствии специально очищенного галлия. Очистка галлия приводится ниже. При упаривании раствора концентрата примесей на 10 мг коллектора весь сухой остаток вносят в кратер электрода. Для эталонов и при упаривании на 50 мг коллектора берут на торзионных весах навески по 10 мг. [c.148]

    На практике в качестве промежуточных соединений в рассматриваемом галогенидном методе используют летучие галоге-ниды, под которыми условно подразумевают галогениды, имеющие давление насыщенного пара при 500 К более 10 Па, и для которых разработаны достаточно эффективные методы очистки. Из рассмотрения свойств галогенидов элементов периодической системы следует, что возможности галогенидного метода достаточно высоки (рис. 1). Действительно, как видно из рис. 1, летучие галогениды имеют более чем 20 элементов, в то время как галогенидный метод используется для глубокой очистки лишь некоторых из них (бор, галлий, олово, мышьяк, сурьма, висмут, молибден, вольфрам). Расширению возможностей галогенидного метода может способствовать и более широкое использование реакций термораспада летучих галогенидов (иодидов). Однако следует иметь в виду, что при повышенных температурах, обычно характерных для процесса термораспада, возрастает веро- [c.12]


    Металлические галлий и его аналоги получают при довольно сложной химической переработке полиметаллических руд. После многократной переработки и очистки из руд выделяют их оксиды или хлориды. Последние химическим или электрохимическим способом восста-наливают до металлов. [c.537]

    Для переработки бедных алюминием отработанных анодных сплавов, получаемых в последнее время, пригодны только кислотные методы. Применявшиеся раньше [3] щелочные методы разложения анодных сплавов (выщелачивание раствором едкого натра) дают удовлетворительное извлечение только в применении к сплавам, содержащим 25—30% алюминия. Разлагать сплав можно как выщелачиванием измельченного сплава серной или соляной кислотой, так и анодным растворением [3]. В раствор наряду с галлием и алюминием переходят также железо и частично (за счет окисления кислородом воздуха) медь. Так как железо осаждается купферроном, в этом случае применять для выделения галлия купферрон невыгодно, и перерабатывают растворы экстракционным путем, используя бутилацетат или трибутилфосфат. Если разложение велось серной кислотой, к раствору добавляется соответствующее количество хлорида натрия. Чтобы отделить железо, раствор перед экстракцией обрабатывают каким-либо восстановителем, например железной стружкой. Для реэкстракции галлия из органического слоя последний промывают водой. После экстракции следует очистка от примесей молибдена и олова осаждением сернистым натрием и, наконец, электролиз щелочного раствора галлата с целью получения металлического галлия. [c.257]

    В 0,03—0,05-н. НС1 при воздействии сероводорода на раствс" соли осаждается желтый сульфид индия, что создает возможность отделять его от железа, алюминия, галлия, марганца. В более кислых растворах солей индия сероводородная очистка позволяет осуществить отделение от кадмия, олова, меди и других примесей. [c.550]

    Деление Электродов по агрегатному состоянию на жидкие и твердые, хотя и кажется на первый взгляд примитивным, в действительности отражает глубокие специфические, отличия ъ методике работы, характере изучаемых закономерностей и областях применения. Среди жидких электродов как в фундаментальной электрохимии, так и на практике наибольшее распространение получил ртутный электрод. Одной из причин широкого использования ртутного электрода при электрохимических исследованиях служит легкость очистки ртути и возможность изготовления капающего электрода с возобновляемой поверхностью. На капельном электроде с небольшим периодом жизни капли примеси, всегда присутствующие в том или ином количестве даже после тщательной очистки раствора, не успевают накапливаться и не искажают результаты измерений, тогда как при работе на стационарных электродах достижение необходимой степени очистки растворов часто оказывается чрезвычайно сложной задачей. Примерами других жидких электродов служат жидкий галлий (т, пл. галлия 29,8 °С), растворы металлов в [c.15]

    Нитридный метод. Галлий с азотом не реагирует даже при очень высокой температуре, с аммиаком же образует нитрид только при 900° С. В то же время щелочные и щелочноземельные металлы, железо, алюминий и другие примеси реагируют с азотом или аммиаком при более низкой температуре. Нитриды меди, цинка и кадмия образуются с трудом и легко разлагаются. Рафинируют галлий аммиаком или смесью аммиака с азотом. Мелкие галлиевые капельки пропускают через вертикальную трубу, нагретую до 800°. Этим самым избегают соприкосновения галлия с горячими стенками сосуда. Цикл очистки повторяют 15 —20 раз. При этом достигается высокая степень очистки от примесей железа, титана, алюминия, в меньшей степени от магния, цинка и т. д. Эти примеси накапливаются в нитридном шлаке и в налете на стенках реакционного сосуда [122]. [c.268]

    Дальнейшую очистку галлия производят либо кристаллофизическими методами, либо другими методами тонкой очистки. [c.265]

    Хлориды галлия очень реакционноспособны, особенно в жидком состоянии. Поэтому всю аппаратуру для их получения, очистки и восстановления делают из кварца предусматривается полное удаление кислорода, паров воды и органических веществ. Рафинирование через хлорид позволяет из галлия чистотой 99,9% получить галлий для полупроводниковой техники чистотой 99,9999% [116]. [c.268]

    Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов, В перво(1 части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии, В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов н отходов прэизводства, современные методы разделения и очистки элементов. [c.2]


    Наиболее благоприятны для очистки диаграммы состояний с эвтектиками и с очень узкой областью гомогенности твердых растворов примеси в основном веществе, например индия в германии (как на рис. 52). Чем меньше единицы коэффициент распределения /(=Ств/Сж, тем лучше. Гораздо менее благоприятные условия создаются, когда примесь образует непрерывный ряд твердых растворов с основным веществом (как на рис. 6). Для примесей первого рода К=Стп/С-д,>1 (например, для бора в германии /(=17,3), а для примесей второго рода /(<1. Например, для алюминия и галлия в германии /( = 0,01, для индия /( = 0,001, для теллура и висмута /( = 4-10- и т. д. Чем К<, тем легче очищается вещество от этой примеси. Для примесей с К> метод мало эффективен, а при /С=1 очистка совсем не происходит. Например, таким образом нельзя удалить бор из кремния, так как Этим методом не достигают однородности химического состава слитка и совершенство структуры. [c.323]

    Амальгамный метод. Этот способ очистки основан на том, что при 300° галлий (как и большинство присутствующих в нем примесей) хорошо растворяется в ртути (см. рис. 49). После охлаждения очищенный галлий отслаивается. Примеси частично остаются в ртути, частично образуют всплывающие на поверхность галлия кристаллики интерметаллических соединений. Эти частички отфильтровывают, после чего очищенный галлий отделяют от ртути декантацией или кристаллизацией. Окончательно очищают от ртути нагреванием в вакууме до 1300° или кристаллофизическими методами [123]. [c.268]

    Получить галлий высокой чистоты, годный для полупроводниковой техники, из технического металла можно только комбинацией ряда вышеописанных методов. Все операции очистки, особенно на последних ступенях, должны вестись так, чтобы воспрепятствовать попаданию примесей из применяемых реактивов, из материала посуды, а также из воздуха. Например, схема окончательной очистки галлия, описанная в [125], включает промывку металла чистой кислотой и дважды перегнанной водой, электролитическое рафинирование в рас- [c.268]

    Получение важнейших соединений галлия. Из всех разнообразных соединений Оа самое наибольшее практическое значение имеют полупроводниковые соединения типа А В . Из них в промышленных масштабах производят арсенид, фосфид и в меньшей степени антимонид. Для получения полупроводниковых соединений в качестве исходных материалов используют галлий и другие компоненты высшей степени чистоты. Особенно тщательно очищают от тех примесей, которые с трудом удаляются при последующей кристаллофизической очистке соединений. В случае, например, арсенида галлия такими примесями являются сера и селен. Применяются также все меры для предотвращения загрязнения в процессе синтеза и очистки. [c.269]

    Фосфид и арсенид галлия обладают существенным давлением диссоциации при температуре плавления. Конгруэнтное плавление этих соединений и, наоборот, кристаллизация из стехиометрических расплавов возможны только под давлением паров летучего компонента, равным давлению диссоциации. Это сильно осложняет как синтез соединений из компонентов, так и их кристаллофизическую очистку. [c.269]

    Хлоридные методы. Наряду с кристаллофизическими методами очистки галлия предложен ряд других методов тонкого рафинирования. Наиболее перспективна, по-видимому, очистка галлия через его хлорид. Путем простой дистилляции ОаС1з можно очистить от малолетучих хлоридов меди, магния, свинца и т. д. Ректификация позволяет очистить его от более летучих хлоридов железа, кремния, германия, олова и в меньшей степени алюминия [115]. Хорошая очистка трихлорида достигается зонной плавкой. Такие примеси, как медь, железо. [c.266]

    В литературе указывается на возможность прямого синтеза трехбромистого галлия из элементов с последующей очисткой получаемого при этом продукта от свободного брома перегонкой в вакууме или в токе индифферентного газа [1-3]. [c.130]

    Широкое применение в активационном анализе нашли хроматографические методы выделения и очистки марганца [539, 1220], например прп анализе арсенида галлия [175], жидких включений в рудах [916], сурьмы [13], фосфата натрия [981], алюминия [1167], циркония [1087], стали [1059], кремния и его соединений [255, 256, 1001[, биологических объектов [823, 1185], почв [1545], геологических материалов, метеоритов [1386]. [c.91]

    В настоящее время с помощью ионообменного метода успешно решаются проблемы разделения близких по свойствам элементов (кобальта и никеля, лантаноидов, галлия и алюминия и др.) и очистки веществ от примесей с целью получения продуктов особой чистоты. Кроме того, этот метод позволяет выделять индивидуальные компоненты из растворов, содержащих соли редких металлов, йодиды и бромиды, извлекать редкие элементы из морской воды и т.д. Для всех этих процессов используются так называемые ионообменные сорбенты (иониты). [c.85]

    Важнейшим представителем производных одновалентного галлия является коричнево-чер1гый окисел GajO, образующийся при нагревании GaaOa с металлическим галлием. Очистка его может быть проведена перегонкой в вакууме при [c.69]

    Металлические галлий и его аналоги получают при довольно сложной химической переработке полиметаллических руд. После много-кратой переработки и очистки из руд выделяют их оксиды или хлориды Последние химическим или электрохимическим способом восстанавливают до металлов. Галлий и его аналоги легко сплавляются со многими металлами. При этом части образуются эвтектические сплавы с низкими температурами плавления. Например, сплав 18,1% 1п с 41 %В1, 22,1 % РЬ, 10,6% 5п и 8,2% Сс1 плавится всеголишь при 47 С  [c.463]

    Комплексные соединения элементов подгруппы галлия широко используются для их количественного определения, разделения и очи-стки. Так, из растворов (6—8 М) галогеноводородных кислот элементы подгруппы галлия легко экстрагируются органическими растворителями в виде Н[М Т4], чем пользуются при их отделении от сопутствующих элементов, например алюминия, который в этих условиях образует неэкстрагирующиеся анионные комплексы состава [А1Г (Н20)б-п] Комплексные соединения с купфероном, 8-оксихинолином, этиленди-аминтетраацетатом используются для количественного определения элементов, а с ацетилацетоном и его производными — для получения окисных пленок, проведения транспортных реакций, а также для очистки и разделения смесей элементов подгруппы галлия. [c.179]

    Для очистки и получения монокристаллов GaAs применяют бес-тигельную зонную плавку. Арсенид галлия — темно-серое вещество, рентгенографическая плотность его 5,4 г/см , постоянная решетки 5,65 А. Устойчив на воздухе, начинает окисляться при нагревании выше 600° С. Рабочая температура приборов из арсенидов галлия до 450° С. [c.304]

    Из полученных концентрированных галлатных растворов галлий выделяют электролизом. Примеси цинка, молибдена, а также органических веществ, попадающие в раствор из амальгамы, мешают выделению галлия 1103]. Поэтому в некоторых случаях перед электролизом для очистки раствора переосаждают галлий в виде гидроокиси и затем растворяют в растворе едкого натра. [c.262]

    Фильтрование. Эффективна очистка галлия от ряда примесей фильтрованием через пористую перегородку. Способ основан на очень малой растворимости большинства металлов в галлии при температуре, близкой к температуре его плавления. При этой температуре примеси в основном находятся в виде взвеси мелких частичек — как самого элемента, так и его окислов или соединений с галлием ( uGaa, FeGaa, NiGa4 и т. п.). По данным [ПО], растворимость при 50° у меди 2,8-10 %, у никеля 6,0-10 , у титана 2,2-10 , у хрома 1,2-10 и у железа 1,0-10" %. Фильтруют через стеклянную или винипластовую перегородку. Оптимальный диаметр пор 30—50 мк [3]. Этим способом содержание примесей железа, меди, кремния и многих других можно снизить до тысячных и даже десятитысячных долей процента. Цинк и свинец при фильтровании не удаляются [108]. [c.264]

    Кристаллофизические методы очистки, основанные на распределении примеси между твердой и жидкой фазами, такие, как зонная плавка, вытягивание кристалла и направленная кристаллизация, начали применяться в технологии (сначала для очистки германия, а потом и других элементов) с пятидесятых годов. Однако особая легкоплавкость галлия послужила причиной того, что для его очистки еще в тридцатых годах был предложен подобный метод — дробная кристаллизация металла. В металл, расплавленный под слоем разбавленной соляной кислоты и охлажденный до температуры кристаллизации, вносят затравку чистого металла. Кристаллизацию проводят до тех пор, пока в жидком состоянии не останется 8—10% от исходного галлия, после чего отделяют кристаллы от расплава, например, центрифугированием. Так как почти все примеси, если их содержание в галлии превышает0,0003%, концентрируются в оставшейся жидкости, кристаллы оказываются чище исходного металла. Кристаллы промывают дистиллированной водой, и цикл кристаллиазции повторяют. После 6—10 таких циклов из галия чистотой 99,999% можно получить металл чистотой 99,9999% [1121. [c.265]

    Трименение зонной плавки для очистки галлия затрудняется склонностью галлия к переохлаждению и расширением его при кристаллизации. Схема одного из предложенных аппаратов для зонной плавки [c.265]

    Очистка через галлийорганические соединения. Для получения чистого галлия рекомендуется триэтилгаллий после очистки фракционной дистилляцией (при пониженном давлении в инертной атмосфере) растворять в диоксане или другом растворителе и разлагать в специальном аппарате действием ультрафиолетовых лучей (например, от ртутной лампы) и пропускать одновременно водород или инертный газ. Галлий собирается в нижней части аппарата, а образовавшиеся углеводороды уносятся с током газа [124]. [c.268]

    Антимонид галлия. Компоненты антимонида галлия не обладают высоким давлением пара, поэтому его получают, сплавляя Оа и 5Ь в атмосфере водорода или аргона. Для очистки от летучих примесей (цинка, кадмия и т. п.) антимонид после синтеза подвергают вакуумной термообработке при 800° и остаточном давлении 10 мм рт. ст. в течение 2 ч. При этом теряется некоторое количество сурьмы за счет испарения для компенсации при синтезе берут избыток сурьмы примерно 5% против стехиометрии. [c.276]

    Методы очистки антимонида галлия разработаны еще недостаточно. Мало изучено и поведение примесей при его кристаллофизической очистке. В результате зонной плавки получается материал, содержащий примеси, природу которых определить не удается. Вследствие этого зонную плавку антимонида проводят только с целью гомогенизации образцов. Для этого достаточно 2—4 прохода зоны во встречных направлениях со скоростью менее 2 см/ч. Монокристаллы антимонида выращивают по методу Чохральского в атмосфере водорода на обычных установках. Выращивание из расплава, обогащенного сурьмой, дает монокристаллы более высокого качества. По-видимому, избыток сурьмы способствует получению более стехиометрических кристаллов, а также, возможно, изменяет коэффициент распределения примеси, который в обычном расплаве близко к единице. [c.276]

    Экстракционный способ. Часто применяется в аналитической химии. Таллий хорошо экстрагируется из слабокислых растворов (1—2 н.) в виде комплексных таллийгалогеноводородных кислот НТ1На14, что позволяет отделять его от таких элементов, как железо, галлий, сурьма и т. п., которые экстрагируются из более кислых растворов (5—6 н.) [151]. Предложено применять экстракцию для извлечения таллия из производственных растворов. В качестве экстрагента рекомендуется 10%-ный раствор трибутилфосфата (ТБФ) в керосине [210]. Раствор после очистки от железа и мышьяка подкисляют серной кислотой до концентрации 30 г/л таллий окисляется в Т1(И1) хлорной известью, которая одновременно вносит необходимый для экстракции ион СГ. Реэкстрагируют таллий из ТБФ 5%-ным раствором пирофосфата натрия, который связывает таллий в комплекс (pH раствора при этом должен быть 5—10). Во избежание гидролиза соединений таллия (П1) к реэкстракту добавляют 1 г/л (ЫН4)25 04. Далее реэкстракт подкисляют серной кислотой до 50 г/л. Таллий осаждается на цинковых листах в виде губки, которую промывают, брикетируют и переплавляют. [c.355]

    Обычно для Д. используют такие доступные активные металлы, как Zn, А1, Fe. Нередко применяют сплавы, чаще всего это твердые р-ры на основе осаждающего металла, что позволяет тонко регулировать стандартный потенциал. Иногда в качестве добавок вводят примеси, играющие роль деполяризаторов (напр., добавка Sb при очистке цинковых р-ров от Со). Разновидность Ц.- вьщеление металлов из р-ров с помощью амальгам, напр, амальгамы Zn или амальгамы Na. Для вьщеления Ga из щелочных алюминатных р-ров используют р-р Л1 в жидком галлии (галлама). [c.339]

    Метод хроматографии иа бумаге используют для предварительного отделения марганца от урана при анализе последнего [771, 1299, 1гОО]. Так, при определении марганца и других примесей (Ср, Ni, Со, Си, d, Mo, Fe, Na и Au) в уране, используемом в реакторах [13001, производят отделение урана на бумаге Шлейхер — Шюлль 20 43А с помощью безводного диэтилового эфира, содержащего 5 объемн.% HNOg. Участок хроматограммы, содержащий примеси, затем облучают и производят дальнейшее разделение прпмесей с помощью бумажной хроматографии восходящим способом, используя смесь этанола, НС1 и HjO (75 20 5). Активность измеряют на у-спектрометре с кристаллом NaJ(Tl) и 128-канальном анализаторе импульсов. Аналогичный метод используют при анализе горных пород [911, 912], В активационном анализе очень часто применяют метод экстракции как самый простой и быстрый метод выделения и отделения элементов. С помощью метода экстракции произведено, например, отделение и очистка Мп с последующим у-спектрометрическим определением его в алюминии, сталях [835], уране [1205], биологических объектах [182, 649, 904, 1306], нефти [904], органических материалах [1451], трихлорметил-силане [142] (см. табл. 16). Отделение и очистку марганца проводят методами хроматографии в сочетании с экстракцией при анализах солей цинка [1319], бора [175], галлия [175] и горных пород 11317, 1386]. [c.91]

    Активационные методы с выделениед и радиохимической очисткой образовавшихся изотопов ЗЬ используются для ее определения в алюминии [639—641, 912, 1235, 1247, 1376, 848] и трехокиси алюминия [639], боре и нитриде бора [426], бериллии [523], ванадии и пятиокиси ванадия [145], висмуте [1204, 1659, 1660], вольфраме [144], галлии [1375] и арсениде галлия [640, 824, 825, 831, 1375], германии [610, 639, 640], горных породах [74, 449, 1276, 1554], железе, стали и чугуне [987, 1033, 1113, ИЗО, 1280, 1590, 1653], железных метеоритах [1539], золоте [1676], индии [828, 829] и арсениде индия [115], каменных метеоритах [1136, 1234, 1236, 1515], кремнии [38, 39,275,282,455,639, 640, 861, 1035, 1144, 1355, 1473, 1492, 1540, 1687], двуокиси кремния и кварце [282—285, 487, 639, 640], карбиде кремния [38, 276, 639, 6401, [c.75]


Смотреть страницы где упоминается термин Галлий очистка: [c.225]    [c.176]    [c.261]    [c.266]    [c.267]    [c.275]    [c.192]    [c.333]    [c.363]    [c.91]    [c.914]   
Неорганическая химия Том 1 (1971) -- [ c.322 ]

Основы общей химии Том 2 (1967) -- [ c.218 ]




ПОИСК





Смотрите так же термины и статьи:

Галлай

Галлий

Галлы



© 2024 chem21.info Реклама на сайте