Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Натуральный каучук ускорители вулканизации

    Ускорители вулканизации — это вещества, которые вводятся в резиновую смесь для ускорения процесса вулканизации и повы-щения физико-механических свойств резины. Для вулканизации натурального каучука с помощью серы без ускорителей при температуре 140 °С требуется 3—4 ч применяя ускорители, продолжительность вулканизации сокращают до нескольких минут или секунд. Ускорители вулканизации начали применять уже давно. Вскоре после открытия вулканизации было установлено ускоряющее действие на вулканизацию каучука следующих соединений глета, окиси магния, окиси кальция и других неорганических и органических веществ. [c.131]


    Правильность сформулированного положения была подтверждена сравнением прочности вулканизатов из натурального каучука, полученных тремя способами 1) обычной серной вулканизацией с ускорителем дифенилгуанидином 2) облучением на кобальтовом источнике при комнатной температуре 3) совместным действием -излучения и нагревания с серой. Вулканизаты, полученные в присутствии дифенилгуанидина, содержат преимущественно полисульфидные связи (энергия около 113 кДж/моль). При облучении 7-лучами образуются преимущественно связи —С—С— (энергия около 273 кДж/моль). При одновременном нагревании и облучении образуются связи обоих типов, причем методом изотропного объема показано, что последующее облучение серных вулканизатов практически не влияет на количество полисульфидных связей. [c.206]

    Широко применяемый ускоритель вулканизации смесей на основе натурального и синтетических каучуков общего назначения (бутадиен-стирольного, бутадиен-нитрильного, хлоропренового, винилпиридинового и других каучуков). Особое распро- [c.120]

    Количество серы в резиновой смеси определяется типом каучука, ускорителя вулканизации и активного наполнителя. Напр., в смесях для изготовления шин, содержащих высокодисперсные сажи и ускорители вулканизации класса сульфенамидов, применяют след, количества серы (в мае. ч.) на основе натурального каучука — 1,75—3,00 бутадиен-стирольного — 1,5—2,0 композиций (1 1) стереорегулярного бутадиенового и натурального — 1,5—2,5 (здесь и далее количество В. а. указано в расчете на 100 мае. ч. каучука). [c.268]

    Каучук СКИ-3 по своей структуре и основным свойствам близок к натуральному каучуку. Поэтому он может использоваться вместо, него для изготовления практически всех резиновых изделий общего назначения как в чистом виде, так и в сочетании с другими СК. СКИ-3 вулканизируется серой в присутствии ускорителей вулканизации, а также органическими перекисями. [c.435]

    Влияние ускорителей на плато вулканизации резиновых смесей зависит от вида каучука. Смеси на основе натрий-дивинилового, дивинил-стирольного и дивинил-нитрильного каучуков в присутствии почти всех ускорителей имеют достаточно широкое плато вулканизации. Смеси на основе натурального каучука с ультраускорителямн имеют узкое плато вулканизации, тогда как кантакс обеспечивает широкое плато вулканизации. Величина плато вулканизации зависит также от количества в резиновой смеси серы и ускорителя, от природы и количества противостарителя и сажи. О большом значении широ- [c.133]

    Способностью активировать действие органических ускорителей вулканизации каучука СКС обладают не только окислы металлов, но и некоторые органические основания, в том числе триэтаноламин и его соли, уротропин и ДФГ. Установлено, что вода оказывает значительное активирующее действие на вулканизацию дивинил-стирольного каучука, но не влияет на вулканизацию натрий-дивинилового и натурального каучуков. В присутствии альтакса вода (около 2,5%) ускоряет вулканизацию дивинил-стирольного каучука в 4 раза, но не активирует в тех же смесях действие ДФГ. В смесях с натрий-дивиниловым каучуком активирующее действие органических оснований и окиси цинка невелико. Это объясняется наличием в СКВ активатора — щелочи. [c.145]


    Вследствие малой непредельности (около 3% от непредельности натурального каучука) смеси из бутилкаучука вулканизуются медленно и имеют широкое плато вулканизации, поэтому при вулканизации применяются более активные ускорители и повышенные температуры — порядка 150—160 °С. [c.362]

    Относится к группе очень активных ускорителей вулканизации (ультраускоритель). Широко применяется для получения светлых и цветных резин на основе натурального и синтетических каучуков (бутадиен-стирольного, хлорбутилкаучука, изопренового и бутадиенового каучуков стереорегулярного строения и других каучуков) как самостоятельно, так и в смеси с другими ускорителями (например, с тиазолами, гуанидинами, альдиминами). Может применяться без серы. По ускоряющему действию подобен тетраметилтиурамдисульфиду. Активен уже при температуре 121° С, вследствие чего резиновые смеси склонны к подвулканизации. Температура вулканизации серосодержащих смесей 120—145° С. Температура бессерной вулканизации должна быть выше. Дозировка 0,2—3%. [c.98]

    Одним из способов модификации кристаллических компонентов серных вулканизующих систем следует считать комбинирование двух и более ускорителей с достижением синергического эффекта в процессах приготовления и вулканизации резиновых смесей [36-38]. Согласно авторам работ [39-41] бинарные комбинации ускорителей по их действию в резиновых смесях на основе натурального каучука подразделяются на системы с взаимной активацией обоих ускорителей, с активацией одного ускорителя и с аддитивным их действием. При этом синергизм ускорителей объясняется их химическим взаимодействием с образованием активного комплекса или новых химических соединений, интенсивно взаимодействующих с серой и макромолекулами каучука. [c.13]

    В присутствии ультраускорителей оптимум вулканизации натурального каучука при температуре 140—150 достигается в течение 5—10 мин. В присутствии ускорителей высокой активности оптимум вулканизации достигается при 150 °С в течение 10—30 мин, в присутствии ускорителей средней активности — в течение 30—60 мин, а ускорителей малой активности при той же температуре — в течение 60—120 мин. Из наиболее часто применяемых органических ускорителей вулканизации к ультраускорителям относятся тиурамы, дитиакарбаматы к ускорителям высокой активности — тиазолы к ускорителям средней активности — гуанидины. Гуанидины более активны в смесях с натрий-дивиниловыми каучуками в смесях с дивинил-стирольными каучуками они менее активны, чем с натуральным. [c.132]

    Весьма активный ускоритель вулканизации (ультраускоритель). Применяется для приготовления прозрачных, белых и цветных резин из натурального и синтетических каучуков. Активируется окисью цинка и стеариновой кислотой. По сравнению с другими дитиокарбаматами позволяет получать смеси, более стойкие к подвулканизации. Рекомендуемые температуры вулканизации 85—150° С. Дозировка 0,25—1%. [c.88]

    Относится к группе очень активных ускорителей вулканизации (ультраускоритель-). Широко применяется в рецептуре резиновых смесей из натурального и синтетических каучуков (бутилкаучука, бутадиен-нитрильного, бутадиен-стирольного, хлоропренового и других каучуков) как самостоятельно, так и в сочетании с другими ускорителями (тиазолами, гуанидинами). Дозировка 0,25—3%. Требует добавления активаторов (окиси цинка) в количестве 0,5%. Может применяться без серы для получения теплостойких резин. [c.95]

    Широко распространенный ускоритель вулканизации смесей на основе натурального и многих синтетических каучуков (бутадиен-стирольного, бутадиен-нитрильного, бутилкаучука и других каучуков). Дозировка 0,5—2%. Требует применения активаторов окиси цинка 3—5%, жирных кислот, например стеариновой, 1—2%. Применяется с 2—3% серы. [c.105]

    Широко применяемый ускоритель вулканизации. По своей активности превосходит ускорители класса тиазолов. Особое распространение получил в шинной промышленности. Обладает индукционным периодом в начале вулканизации и способствует хорошему растеканию резиновых смесей в. вулканизационных формах. Применяется как самостоятельно, так и в сочетании е другими ускорителями (например, гуанидинами) для вулканизации резиновых смесей на основе натурального и синтетических каучуков общего назначения (бутадиен-стирольного, бутадиенового и других каучуков). Дозировка до % В смеси с дитио-бис-морфолином активирует действие последнего. [c.119]

    Очень активный ускоритель вулканизации. Применяется а резиновых смесях на основе натурального и синтетических каучуков (бутадиен-стирольного, бутадиен-нитрильного, бутилкаучука), самовулканизующихся клеев. [c.86]

    Ускоритель вулканизации для смесей на основе натурального и хлоропренового каучуков. Дозировка 0,6—1,2%. [c.141]

    Продолжительность смешения. В зависимости от типа каучука, количества и природы ингредиентов изменяется продолжительность смешения. Чем больше наполнителей и других ингредиентов содержится в резиновой смеси, тем больше требуется времени для ее изготовления. Продолжительность смешения, так же как и другие условия смешения, подбирают опытным путем с проверкой однородности резиновой смеси лабораторными методами. Продолжительность смешения колеблется в пределах от 20 до 40 мин. Увеличение продолжительности емешения не всегда приводит к улучшению качества резиновой "меси. Резиновые смеси на основе натурального каучука при продолжительном смешении могут быть перевальцованы, при этом они становятся очень пластичными и липкими, физико-механические свойства их вулканизатов ухудшаются. Резиновые смеси на основе наирита от продолжительного смешения перегреваются и прилипают к валкам, что нарушает нормальные условия обработки резиновой смеси. Перегрев резиновой смеси вследствие продолжительного смешения может вызвать преждевременную вулканизацию, особенно при наличии ускорителей с низкой критической температурой действия. [c.260]


    Влияние типа и количества замедлителя подвулканизации на время подвулканизации (а) и оптимальное время вулканизации (б) смеси на основе натурального каучука (ускоритель вулканизации — каптакс) 1— 0,6 без замедлителя, 2 — фталевый ангидрид, з — трихлормеламин. [c.340]

    Вулканизаты из дивинил-стирольного каучука с сульфенами-дами БТ, Ц и М равноценны по свойствам. Резиновые смеси с этими ускорителями, особенно с сульфенамидом М, отличаются замедленным начальным периодом вулканизации и, в соответствии с этим, стойкостью к подвулканизации. По сравнению с каптаксом все сульфенамиды значительно повышают модули и предел прочности при растяжении вулканизатов из натурального каучука. Сульфенамид Ц и сульфенамид М отличаются большей стабильностью по сравнению с сульфенамидом БТ, кроме того, они являются кристаллическими веществами, что облегчает их хранение, применение и улучшает условия труда . [c.140]

    Очень активный ускоритель вулканизации смесей на основе натурального, бутадиен-стирольного, бутадиен-нитрильного каучуков уже при 12ГС. Дозировка 0,2—0,3%. [c.91]

    Ускоритель вулканизации средней активности (типа дифенилгуанидина) для смесей на основе натурального и синтетических каучуков (например, бутилкаучука). Активируется окисью цинка с кислыми ускорителями. В свою очередь является активатором ускорителей вулканизации класса карбаматов и тиурамов. Хорошо распределяется в каучуке, не вызывает подвулканизации. Минимальная температура вулканизации 121 134° С. Дозировка 0,5—5%.  [c.132]

    JJe аффективными стабилизаторами. Является эффективным ускорителем вулканизации резиновых смесей иа основе натурального и синтетического каучуков общего назначения. [c.179]

    Активный ускоритель вулканизации (ультраускоритель). Применяется для получения самовулканизующихся клеев на основе натурального и синтетических каучуков и латексов. Активируется аминами, альдиминами, производными гуанидина. [c.137]

    Получение. Р. получают гл. обр. вулканизацией композиций (резиновых смесей), основу к-рых (обычно 20- 60% по массе) составляют каучуки. Др. компоненгы резиновых смесей-вулканизующие агенты, ускорители и активаторы вулканизащш (см. Вулканизация), наполнители, противостарители, пластификаторы (мягчители). В состав смесей могут также входить регенерат (пластичный продукт регенерации Р., способный к повторной вулканизации), замедлители подвулканизации, модификаторы, красители, порообра-зователи, антипирены, душистые а-ва и др. ингредиенты, общее число к-рых может достигать 20 и более. Выбор каучука и состава резиновой смеси определяется назначением, условиями эксплуатации и техн. требованиями к изделию, технологией пронз-ва, экономич. и др. соображениями (см. Каучук натуральный, Каучуки синтетические). [c.224]

    Одним из первых классов ингредиентов, использованных для приготовления рези-новьк смесей были асфальты и битумы, которые вводили в натуральный каучук. В настоящее время нефтяные мягчители используют в основном для бутадиен-сти-рольных синтетических каучуков. В резиновые смеси вводят 30-35 масс. ч. мягчи-телей на 100 масс. ч. каучука. Компоненты битумов сравнительно инертны по отношению к вулканизации, но они улучшают распределение ингредиентов — серы и ускорителей и не замедляют вулканизацию. Нефтяные мягчители облегчают каландро-вание и шприцевание, улучшают поверхность каландрованной резиновой смеси. Наиболее известным нефтяным мягчителем является рубракс. Нефтяные мягчители облегчают обработку каучуков, снижают продолжительность и температуру смешения. Вулканизаты становятся более мягкими, эластичными, уменьшаются гистерезисные потери, но прочность снижается. Повышается морозостойкость, сопротивление утомлению, износостойкость, усталостная выносливость резин при многократных деформациях. Повышается производительность смесительного оборудования на 40-50 %, снижается расход энергии на изготовление резиновых смесей на 20-30 %. Состав нефтяных мягчителей влияет на пластифицирующее действие. В наибольшей степени улучшает морозостойкость резин алканы и циклоалканы, но они плохо совмещаются с полярными полимерами, замедляют вулканизацию каучуков и склонны к выпотеванию. Ароматизированные нефтяные пластификаторы хорошо совмещаются с каучуками, улучшают их обрабатываемость, повышают адгезию и [c.134]

    Ускоритель вулканизации высокой активности для смесей на основе натурального и синтетических каучуков и латексов (уль траускоритель). Особенно пригоден для бессерной вулканизации, в связи с чем может быть использован для получения теп- [c.100]

    Материалы с резиновым покрытием, предназначенные для спецодежды, используются для изготовления плащей-накидок, специальных комбинезонов, фартуков и др. В качестве основы служат хлопчатобумажные, щерстяные, полущерстяные и другие ткани из искусственных и синтетических волокон, а для покрытия — резиновые смеси из натурального и синтетического каучуков (СКВ, СКС—30, полиизобутилен или их сочетания). В смеси вводят мягчители, вулканизаторы, ускорители вулканизации, пигменты и антистарители. [c.23]

    Широко распространенный ускоритель вулканизации смесей на основе натурального и многих синтетических каучуков (бутадиен-стирольного, бутадиенового, бутадиен-нитрильного, хлоропренового, бутилкаучука и других каучуков). Применяется как самостоятельно, так и в сочетании с другими ускорителями вулканизации. По своим свойствам сходен с 2-меркаптобензтиа-золом, но значительно более безопасен в отношении вулканизации, так как при 100—130°С менее активен. Очень Активен при 143 С и выше. Дозировка 0,8—2,5%. [c.115]

    Несколько менее активный ускоритель вулканизации по сравнению с Н,Ы-диэтил- и Н-циклогексил-2-бензтиазолилсульфен-амидом. Может использоваться самостоятельна или в сочетании с другими ускорителями (например, с дифенилгуанидином) в смесях на основе натурального и различных синтетических каучуков общего назначения (бутадиен-стирольного, бутадиеном [c.123]

    Широко распространенный ускоритель вулканизации средней активности для смесей на основе натурального и различных синтетических каучуков (бутадиен-стирольного, хлоропренового, бутадиен-нитрильного, бутилкаучука, полисиликонового и других). В основном применяется в сочетании с другими ускорителями (особенно с сульфенамидами и тиазолами). Активируется окисью магния и окисью цинка. Температура вулканизации 135—160° С. Дозировка 1—2%. [c.126]

    Исследование основного релаксационного перехода в сетчатых полимерах было предметом многочисленных работ, но лишь в некоторых из них обращалось внимание на зависимость интенсивности и ширины а-перехода от концентрации узлов. Одним из первых, по-видимому, на это обратил внимание Шаламах [65], который показал, что при сшивании каучуков с помощью различных ускорителей вулканизации максимум диэлектрических потерь снижается. Мэзон [66], исследуя вязкоупругое поведение и дилатометрические свойства ряда каучуков, сшитых с помощью перекиси дикумила, обнаружил значительное расширение области а-перехода с увеличением концентрации узлов сетки. Специальное исследование зависимости параметров а-перехода от степени сшивания для натурального каучука и ряда синтетических каучуков, отвержденных о помощью серы, перекиси дикумила и их смесей, было проведено с помощью метода диэлектрической релаксации Ба-кулем и Хавранеком [63]. Во всех исследованных случаях а-переход описывался функцией распределения Коул—Коула [67], а ширина перехода характеризовалась параметром Ыъ, равным полуширине перехода и составляющим 0,7 его высоты. Параметр ДЙ связан следующей зависимостью с параметром сг характеризующим ширину распределения в уравнении Коул— Коула  [c.210]

    В полиизопреновых цепях, а не путем разрыва поперечных связей. Бевилакуа [28] наблюдал, что количество кислорода, требуемого для разрыва цепи, увеличивается с уменьшением числа поперечных связей, и объяснил это тем, что деструкции подвергаются как основные цепи, так и поперечные связи. Скорость разрыва вблизи поперечной связи может изменяться в зависимости от метода вулканизации. Основываясь на изучении количества растворимой фракции, образующейся в процессе окисления вулканизованного натурального каучука, Хорикс [42] предположил, что поперечные связи при окислении при 100° не разрушаются. Распад основной цепи может происходить в этих условиях и может быть аналогичен реакции, которая наблюдается в невулканизованном каучуке. В разных условиях окисления может преобладать разрыв поперечной связи или связи в основной цепи, находящейся рядом с поперечной связью, что приводит к упорядоченному разрыву. Возможно, что эти реакции протекают одновременно со сравнимыми скоростями, которые изменяются в зависимости от условий реакции. Как уже отмечалось, различные ингредиенты, вводимые в смесь с эластомером, могут изменять скорости и/или направление окислительной реакции. Серусодержащие ускорители, используемые для вулканизации каучука, увеличивают скорость окисления прямо пропорционально количеству вводимой серы [43]. Этот факт может характеризовать, насколько сульфидные поперечные связи ускоряют деструкцию полимерных цепей, и может одновременно указать на независимость разрыва связи от способности элементарной серы и некоторых серусодержащих соединений ингибировать реакции окисления. [c.464]

    Любопытна история открытия органических ускорителей вулканизации, о которой один из химиков, участвовавших в открытии, рассказывает следуюш,ее [6] Существуют определенные сорта синтетического каучука, которые очень быстро разлагаются на воздухе, присоединяя кислород. Однако, как открыла фирма Фарбенфабрикен Байер и К° , эти сорта можно весьма эффективно предохранять от окисления, если примешивать к ним незначительное количество органических оснований. В качестве таких предохраняющих оснований применялись анилин, пиридин, хинолин, диметиламин и в одном случае пиперидин. В то время как названные вначале основания не вызывали никаких значительных изменений при вулканизации указанных сортов каучука, каучук, в который был добавлен примерно 1 % пиперидина, обнаруживал после вулканизации совершенно другие свойства, позволяющие сделать вывод, что прошла глубокая вулканизация. Определение количества присоединенной серы дало поразительный результат. Оказалось, что серы было присоединено примерно в восемь раз больше, чем могло быть при обычных условиях. Этот факт (установленный начальником каучукового цеха завода фирмы Фарбенфабрикен Байер и К° Гофманом совместно с Готтлобом) побудил нас исследовать действие пиперидина при вулканизации натурального каучука. При этом мы получили аналогичный ре-, зультат . [c.143]

    Аналогичное влияние азотсодержащих гетероциклических группировок на вулканизационное действие ускорителей наблюдается и в ряду тиурамсульфидов (I—III). Несимметричные тиурамсульфиды, содержащие в молекуле пиперидиновые, пиперазиновые и морфолиновые гетероциклы, являются высокоактивными ускорителями вулканизации. Так, применение их в смесях из натурального каучука приводит к получению вулканизатов, по прочностным показателям (по модулю и сопротивлению разрыву) превышающих вулканизаты с нашедшим широкое применение тет-раметилтиурасульфидом и значительно превосходящих вулканизаты, полученные с помощью такого ускорителя,. как 2-меркаптобензтиазол. Тиурамсульфиды, содержащие гетероциклические группировки с двумя гетероатомами (II и III), придают резиновым смесям большую стойкость к преждевременной вулканизации. Данные, характеризующие кинетику изменения вязкости по Муни смесей из бутадиенстирольного каучука при температуре 125° (рис. 2), показывают, что в случае применения таких ускорителей подъем кинетических кривых начинается лишь после 26— 27 мин нагревания, тогда как для смеси, содержащей алифатический тиу-рамсульфид, резкое повышение вязкости имеет место уже на 17 мин нагревания Смесь с тиурамсульфидом — производным пиперидина (I) — по склонности к преждевременной вулканизации занимает промежуточное положение между указанными выше системами с гетероциклическими и алифатическими тиурамсульфидами. [c.52]

    Основными исходными материалами для изготовле-йия резиновых деталей являются резиновые смеси, в состав которых входят натуральные и синтетические каучуки, наполнители, вулканизирующие вещества, ускорители вулканизации, мягчители, противостарители, поро-образователи и красители. [c.74]

    В состав резиновой смеси входят натуральный или синтетический каучук, ускорители и активаторы вулканизации, противо-старители, пластификаторы и наполнители. В зависимости от массового содержания серы на 100 ч. каучука, как основного вулканизующего агента, резиновые смеси делят на три типа мягкие резины (2—4 ч. серы), полуэбониты (12—30 ч.) и эбониты (30— 50 ч.). Характеристика резиновых смесей дана в табл. 3.15, 3.16. 198 [c.198]


Смотреть страницы где упоминается термин Натуральный каучук ускорители вулканизации: [c.404]    [c.171]    [c.339]    [c.382]    [c.226]    [c.53]    [c.301]    [c.228]    [c.308]    [c.341]    [c.87]    [c.165]   
Технология резины (1967) -- [ c.132 , c.141 ]

Технология резины (1964) -- [ c.132 , c.141 ]




ПОИСК





Смотрите так же термины и статьи:

Вулканизация каучука

Натуральный каучук

Натуральный каучук вулканизация

Ускорители

Ускорители вулканизации



© 2025 chem21.info Реклама на сайте