Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Резина физико-механические свойства

Таблица 7.2. Изменение физико-механических свойств резины ИРП-1078, не содержащей антиокислителей, в окисляющихся углеводородах (150 °С) Таблица 7.2. <a href="/info/1788249">Изменение физико-механических свойств</a> резины ИРП-1078, не содержащей антиокислителей, в окисляющихся углеводородах (150 °С)

Таблица 7.4. Изменение физико-механических свойств резины ИРП-1078 в гексадекане, содержащем гндропероксиды Таблица 7.4. <a href="/info/1788249">Изменение физико-механических свойств</a> резины ИРП-1078 в гексадекане, содержащем гндропероксиды
Таблица 7.3. Влияние стабильных продуктов Окисления углеводородов на физико-механические свойства резины Таблица 7.3. <a href="/info/498323">Влияние стабильных</a> <a href="/info/651302">продуктов Окисления углеводородов</a> на <a href="/info/129852">физико-механические свойства</a> резины
    Ускорители вулканизации — это вещества, которые вводятся в резиновую смесь для ускорения процесса вулканизации и повы-щения физико-механических свойств резины. Для вулканизации натурального каучука с помощью серы без ускорителей при температуре 140 °С требуется 3—4 ч применяя ускорители, продолжительность вулканизации сокращают до нескольких минут или секунд. Ускорители вулканизации начали применять уже давно. Вскоре после открытия вулканизации было установлено ускоряющее действие на вулканизацию каучука следующих соединений глета, окиси магния, окиси кальция и других неорганических и органических веществ. [c.131]

    Выше мы кратко рассмотрели зависимость от молекулярной структуры эластомеров технологических свойств сажевых смесей и основных физико-механических свойств вулканизатов. Можно указать на ряд других свойств резин, имеющих важное значение при конструировании различных резино-технических изделий, такие как усталостная выносливость, ползучесть, остаточные деформации и др., улучшение которых связано с получением однородных материалов — однородных сеточных структур, что в свою очередь, опирается на внедрение каучуков с определенным молекулярным составом. Весьма существенным является также использование растворимых вулканизующих групп и интенсификация процессов смешения. [c.92]

    Физико-механические свойства резин в значительной мере определяются скоростью вязкоэластических процессов и (или) скоростью кристаллизации. Так как обычно используемые эластомеры кристаллизуются при высоких растяжениях, то скорость кристаллизации будет определять в основном предельные свойства резин, например, разрывную прочность. [c.83]


    В последнее время были развиты методы растворной полимеризации для получения чередующихся (альтернантных) сополимеров [16]. Такой подход к проблеме сополимеризации позволяет получить полимеры принципиально новой структуры и, возможно, избежать проблем, связанных с композиционной неоднородностью сополимера. Альтернантные сополимеры бутадиена с нитрилом акриловой кислоты уже выпускаются в промышленном масштабе. Показано, что в том случае, когда эти сополимеры содержат звенья бутадиена в гране-конфигурации, полимерные цепи способны к ориентационной кристаллизации [17, 18]. Для получения резин с оптимальными физико-механическими свойствами необходимо получение альтернантных сополимеров с достаточно высокой молекулярной массой ([г)] = 2—2,5). [c.63]

    В инертной среде резина без антиокислителей, контактируя с топливом, не изменяет своих физико-механических свойств в течение сотен часов. Резина не изменяет своих свойств и тогда, когда есть доступ кислорода в топливо, но оно содержит антиоксидант. Пока антиоксидант тормозит окисление топлива, резина в контакте с топливом и кислородом сохраняет свои физи-ко-механические свойства. Чрезвычайно медленно протекает старение резины, не содержащей антиоксиданты, на воздухе в отсутствие контакта с топливом. Совокупность этих фактов 00 [335] свидетельствует о том, что ускоренное старение рези- ны вызывают продукты окисле- 75 -ния углеводородов, а не рас [c.229]

    Таким образом, требования, предъявляемые к молекулярному строению высокомолекулярных эластомеров с точки зрения получения резин с наилучшим комплексом физико-механических свойств и в то же время высокотехнологичных, являются достаточно противоречивыми. Именно для разрешения этого противоречия во всех практически реализуемых процессах синтеза каучуков необходимо проводить работы по регулированию ММР (или в более общем случае регулированию молекулярного состава) образующихся полимеров с целью их оптимизации. Вопрос о синтезе каучуков с оптимальным молекулярным составом в каждом конкретном случае должен решаться отдельно с учетом существующей технологии переработки и требований, предъявляемых к основным показателям резин. [c.93]

    Физико-механические свойства резин [c.42]

    По комплексу свойств силоксановые вулканизаты существенно отличаются от всех других резин, а по отдельным из них значительно превосходят вулканизаты на основе большинства органических каучуков. Для них характерны 1) более высокая термическая стабильность на воздухе и в вакууме 2) лучшая морозостойкость 3) повышенная стойкость к озону и к атмосферным воздействиям 4) лучшие физико-механические свойства при высоких температурах 5) значительно более высокая и селективная газо- и паропроницаемость 6) более высокая стойкость к коронному разряду 7) прекрасные диэлектрические характеристики, [c.490]

    Авторами приведены лишь некоторые примеры практического использования уретановых эластомеров, но и они свидетельствуют о том, что в настоящее время трудно назвать такую отрасль промышленности, которая не нуждалась бы в полиуретанах. И, несмотря на то, что стоимость их в 2—4 раза выше стоимости других каучуков и резин, применение полиуретановых эластомеров уже сейчас экономически выгодно вследствие высокого уровня физико-механических свойств и значительного увеличения срока службы изделий. [c.549]

    Основные физико-механические свойства резин и эбонитов, применяемых для гуммирования [c.441]

    Теплостойкость и морозостойкость являются одними из важных характеристик резин, как и любых полимерных материалов. Они характеризуются верхней и нижней допустимой температурой, при которых возможна длительная эксплуатация. В силу особенностей физико-механических свойств, при определенной высокой температуре полимер, как известно, переходит в вязко-текучее состояние, а при переохлаждении — в стеклообразное. Таким образом, при испытаниях на теплостойкость и морозостойкость определяют температуру перехода полимерного материала из высокоэластического состояния в вязко-текучее и стеклообразное. [c.103]

    В табл. 7.3 [335] приведены данные о влиянии стабильных продуктов окисления и кислорода воздуха на физико-механические свойства резины, нз которой экстрагированы антиоксиданты. [c.230]

    Резины имеют высокую стойкость к тепловому старению при температуре 200—250 °С. После нагревания вулканизатов в течение 3- месяцев при температуре 200—250" С физико-механические свойства их изменяются мало, тогда как в этих же условиях резины из натурального и синтетических каучуков общего назначения полностью теряют свою работоспособность. [c.113]

    Модификаторы (резотропин или резотропин РУ) добавляют в резиновые смеси для придания им клейкости, повышения когезионной прочности сырых смесей и улучшения адгезионных и физико-механических свойств резин. [c.25]


    При введении волокнистых наполнителей не только улучшаются физико-механические свойства резин, но и обеспечивается анизотропия свойств в материале. В той или иной мере применение при производстве РТИ нашли природные, химические и минеральные волокна. Важной характеристикой волокнистых наполнителей является фактор формы — отношение длины волокна к диаметру. У большинства волокон он изменяется в широких пределах от 5 до 2700, хотя оптимальным считается фактор формы от 100 до 200. При среднем диаметре волокон 20-30 мкм желательна длина 3,0-4,5 мм. Волокна большей длины сложней равномерно распределить в объеме резины, они, как правило, перепутываются, образуя клубки. Поэтому рекомендуется волокна перед введением измельчить. Если необходимо ввести волокна большей длины, можно рекомендовать вво- [c.27]

    Увеличение числа межмолекулярных связей, т. е. усиление межмолекулярного взаимодействия, придает полимерным материалам большую механическую прочность. В производстве резины процесс перевода пластичного сырого каучука в эластичный материал, обладающий лучшими физико-механическими свойствами, называют вулканизацией. Сущность его заключается в соединении макромолекул каучука полисульфидными связями в пространственную сетку. При введении в каучук 0,5—5,07о серы получается мягкая эластичная резина. С увеличением содержания серы возрастает число межмолекулярных связей и увеличивается жесткость резины. При введении в каучук до 50% серы образуется жесткий неэластичный материал — эбонит. [c.247]

    Применение ускорителей дает возможность уменьшить количество серы, необходимое для вулканизации, и тем самым устранить возможность ее выцветания а поверхности резиновых изделий, уменьшить возможность перевулканизации, повысить сопротивление старению, а также физико-механические свойства резин. [c.131]

    Для решения вопросов производства резинотехнических изделий (РТИ) и выбора резин для конкретных изделий необходимо оценивать их физико-механические свойства. Количественные закономерности свойств полимеров значительно сложнее, чем для металлов, так как они должны учитывать фактор времени. Изучение свойств резин базируется на анализе четырех основных параметров деформации е, напряжения ст, температуры Т и времени Если для упрощения принять два параметра постоянными и следить за соотно-щением двух других, то возможны шесть различных видов испытаний  [c.42]

    Конечно, не только форма, но и химическая природа макромолекулы влияет на физико-механические свойства соответствующего полимерного материала. Если между макромолекулами линейного полимера не возникает значительного взаимодействия (а это значит, что в макромолекуле нет сильно взаимодействующих друг с другом полярных групп), то макромолекулы могут легко передвигаться относительно друг друга, соответствующий материал оказывается тягучим таков невулканизированный каучук, полиэтилен (особенно при нагревании). Эластичность (способность восстанавливать первоначальную форму после снятия нагрузки) таких материалов ограниченна. По мере того как возрастает взаимодействие между макромолекулами линейного полимера (т. е. по мере накопления в полимере полярных, взаимодействующих друг с другом групп), его свойства постепенно приближаются к свойствам трехмерного полимера. Того же результата можно достигнуть, химически сшивая макромолекулы. В каучуке это происходит при нагревании с серой при малом содержании серы получается мягкая, эластичная резина, когда же число серных мостиков растет, материал постепенно становится все более твердым, а эластичность его падает. При содержании серы 30—50 , о получается твердый эбонит, который до появления пластмасс имел большое значение как электроизоляционный материал. [c.317]

    Лента состоит из несущего слоя из прочного термостойкого материала и изолирующего слоя, изготовленного из кремнийорганической резины радиационной вулканизации толщиной 0,6 мм. В ленте марки А несущим слоем является радиационно-обработанный оберточный материал ПДБ (ТУ 21-27-29—77), а в ленте марки Б — гидрофобизированная стеклоткань (ГОСТ 8481—75). Лента производится шириной 250 мм и толщиной 1,2 0,2 мм (марка А) и 0,6 0,1 мм (марка Б). Основные физико-механические свойства ленты ЛЭТСАР-ЛПТ приведены ниже. [c.70]

    Под теплостойкостью каучука н резин следует понимать их устойчивость к длительному воздействию повышенных температур, вызывающему, как правило, необратимые изменения, свойств вулканизатов. Температуростойкость характеризует способность их сохранять физико-механические свойства при повышенной температуре. [c.71]

    КАУЧУК СИНТЕТИЧЕСКИЙ (СК)-высокополимерный каучукоподобный материал, получаемый полимеризацией и сополимеризацией различных непредельных соединений (бутадиен, стирол, изопрен, хлоропрен, изобутилен, нитрил акриловой кислоты) или поликонденсацией соответствующих бифункциональных производных углеводородов. Подобно И К К. с. имеет длинные макромолекулярные цепи, иногда разветвленные, со средней молекулярной массой, равной сотням тысяч, иногда миллионам. Полимерные цепи К. с. в большинстве случаев имеют двойные связи, благодаря которым при вулканизации образуется пространственная сетка, обусловливающая характерные для резины физико-механические свойства. Некоторые виды К. с. (напр., полиизо-бутиленовый, силиконовый и др.) — полностью предельные соединения, вулканизуются в присутствии органических пероксидов, аминов и др. По техническим свойствам некоторые К. с. значительно превосходят НК, но в отличие от НК в К с. при переработке требуется вводить специальные активные наполнители (сажу, активную кремнекис-лоту, оксид алюминия, каолин, мел и др.), усиливающие механическую прочность вулканизаторов. К. с. применяют для изготовления резин, резиновых изделий, автошин, транспортных лент, обуви, изделий для работы с органическими растворителями и др. [c.123]

    Введением наполнителей можно влиять на физико-механические свойства резины, изменяя их в нужном направлении в соответствии с требованиями и условиями практического применения резиновых изделий. [c.148]

    Физико-механические свойства резин из дивинил-стирольного каучука, наполненных различными сажами  [c.162]

    Для этих полимеров, имеющих практически фиксированную микроструктуру, определяющую роль с точки зрения технологических свойств невулканизованных смесей и физико-механических свойств резин играют такие параметры, как ММР и геометрическое строение полимерных цепей — степень и характер их разветвленности. Эти параметры зависят от типа каталитической системы, ее физико-химических свойств (в частности, растворимости) и условий проведения процесса полимеризации. В случае растворимых (гомогенных или близких к ним) каталитических систем образуются линейные и статистически разветвленные полимеры. В случае гетерогенных систем возможно образование микрогеля специфического строения (см. рис. 1) С точки зрения общих представлений о технологических свойствах резиновых смесей и процесса вулканизации строение растворных микрогелей является более благоприятным, чем строение микрогеля эмульсионной полимеризации. [c.59]

    Микроструктура полиизопрена оказывает решающее влияние на физико-механические свойства резин на его основе. Прочность ненаполненных вулканизатов минимальна при суммарном содержании 1,2- и 3,4-звеньев 20—60% (рис. 3) [13]. Скачок на кривой (см. рис. 3) обусловлен прежде всего возможностью плотной упаковки регулярно построенных макромолекул и кристаллизации их в условиях деформации. Следует отметить, что полимеры с высоким содержанием 1,2- или 3,4-звеньев характеризуются очень малыми значениями эластичности (рис. 4). При содержя--нии 1,2- и 3,4-звеньев близком к 100% как каучук, так и вулканизаты на его основе сильно закристаллизованы. [c.203]

    В чериячно-лопастных смесителях можно смешивать пластические массы и резины, а также сыпучие и пастообразные материалы. В большинстве случаев эти машины нзготовляют с двумя валами — смесительными органами, конструкция которых зависит от физико-механических свойств смешиваемых материалов. [c.245]

    В топливных системах двигателей топливо контактирует с неметаллическими материалами резиновыми шлангами и манжетами, прокладками, втулками, герметиками и др. Нитрильные каучуки, тноколовые герметики в топливах набухают, стареют и быстро теряют эластичность, что сокращает срок их службы и ухудшает надежность работы топливных систем. Как правило, причиной ухудшения физико-механических свойств резин является вымывание топливом из резин антиокислителей (неозона О, а -нафтиламина) и окисление резин перекисными соединениями топлив. Снижение отрицательного влияния на резиновые детали топливных систем реактивных топлив можно достигнуть путем улучшения их антиокислительных свойств с помощью гидроочистки и введения присадки типа ионола. [c.161]

    В отличие от резин и полиэтилена, другие неметаллические материалы топливной системы автомобиля в чистом метаноле большей степени ухудшают свои физико-механические свойства, чем в автсбензинах А-76, Аи-93 и БМС, Наибольшее воздействие метанол оказывает Ш1 кожу и картон (табл,3,8). Степени набухания кожи и картона-92,5 и 40,8% соответственно, что значительно отлича ется от этого показателя у других неметаллических материалов. Если степень набухания кожи при контакте с БМС в 2,2 раза больше, чем у полиэтилена, то степень её вымывания [c.104]

    Измеритель вязкоупругих свойств ИВУС-1 предназначен для неразрушаюп1его экспресс-определения физико-механических свойств изделий из полимерных материалов (резин, пенополиуретанов и др.). [c.69]

    Благодаря регулярности строения, 1,4-дивиниловый каучук превосходит натрий-дивиниловый каучук по многим свойствам и приближается к натуральному каучуку. Он имеет низкую температуру стеклования (—110° С), значительно сопротивляется истиранию и очень эластичен. Отличие от натурального каучука заключается в том, что он не обладает клейкостью, плохо поддается переработке на резиносмесительном оборудовании. Физико-механические свойства резин на основе 1,4-дивинилового каучука в зависимости от температуры падают более резко, чем резин на натуральном каучуке. [c.184]

    Равномерное распределение ингредиентов в резиновой смеси в ряде случаев затрудняется образованием агломератов некоторых ингредиентов, что ведет к резкому понижению однородности резиновой смеси. Грубые агломераты ведут себя в резине подсобно посторонним телам, агломерация или комкование ингредиентов обычно понижает физико-механические свойства вулканизатов. Легко комкуются канальная, антраценовая сажи и окись цинка они значительно лучше распределяются в жесткой резиновой смеси с низкой пластичностью. Поэтому газовую канальную и антраценовую сажи следует вводить после введения мягких сортов сажи (если они имеются в резиновой смеси), которые не комкуются, но заметно повышают жесткость смеси. По той же причине не следует вводить перед ними в резиновую смесь большого количества мягчителей, значительно повышающих пластичность резиновой смеси. При наличии большого количества жидких мягчителей вводить их следует осторожно, загружая постепенно небольшими порциями. При загрузке несоразмерно большого количества мягчителей загрязняются вальцы (стрелы, противень), увеличиваются потери мягчителя, резиновая смесь может отставать от валка с образованием отдельных несвязанных кусков. Это приводит к значительной затяжке процесса смешения. [c.259]

    Синтетические каучуки, как и каучук природный, обычно не применяют в сыром виде, а превращают путем вулканизации И смешивания с различными добавками (наполнители, противоста-рители, красители и др.) в резину. О физико-механических свойствах резин, изготовленных из некоторых типов каучуков с сажей в качестве наполнителя, дает представление таблица 16. [c.326]

    По данным исследований Б. А. Догадкина и его сотрудни-кoв основная роль в повышении прочности СКБ (кроме присоединения серы) принадлежит межмолекулярному взаимодействию. При вулканизации других синтетических каучуков свойства их изменяются по типу, характерному для натурального или натрий-дивинилового каучуков. Составные части резиновых смесей также оказывают значительное влияние на кинетику изменения физико-механических свойств резин при вулканизации. [c.73]

    Наполнители принято подразделять на неактивные и активные наполнители, часто называемые усилителями. Усилители увеличивают предел прочности при растяжении резины, сопротивление истиранию и раздиру. Неактивные, или инертные, наполнители не повышают физико-механических свойств резины. Это различие оказывается достаточно строгим только при применении наполнителей с натуральным каучуком. Таким образом, характер действия наполнителей в значительной степени зависит от природы каучука. Активность наполнителей при применении их с некристаллизуюш,имися каучуками (натрий-дивиниловым, дивинил-стирольным, дивинил-нитрильным) оказывается значительно выше, чем при применении с кристаллизующимися каучуками (натуральным, бутилкаучуком и хлоропреновым). Если предел прочности при растяжении вулканизатов натурального каучука при применении наиболее активных наполнителей возрастает на 20 — 30%, то предел прочности при растяжении вулканизатов СКБ возрастает в 8—10 раз. Наполнители неактивные в смесях с натуральным каучуком оказываются активными в смесях с натрий-дивиниловым и другими синтетическими каучуками, но неактивные наполнители, как правило, не повышают сопротивление вулканизатов этих смесей истиранию. [c.147]

    Влияние саж на физико-механические свойства резин иллюстрируется даннылп табл. 5 и (стр. 162). [c.150]


Смотреть страницы где упоминается термин Резина физико-механические свойства: [c.61]    [c.280]    [c.407]    [c.517]    [c.229]    [c.232]    [c.144]    [c.19]    [c.21]    [c.60]   
Расчеты и конструирование резиновых технических изделий и форм (1972) -- [ c.7 ]




ПОИСК





Смотрите так же термины и статьи:

Резины механические свойства

Физико-механические свойства



© 2024 chem21.info Реклама на сайте