Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рамановские спектры, применение для

    Значения констант устойчивости азотной [128, 169], хлорной [129], серной [167—169] и йодноватой [69] кислот хорошо согласуются со значениями, полученными из спектров ядерного магнитного резонанса [69, 70, 72] (см. рис. 69). Однако рамановский эффект настолько слаб, что необходимо использовать высокие концентрации, и поэтому обычно невозможно работать с постоянной ионной средой. Следовательно, отношение активностей получается экстраполяционным методом. Необходимы значительные улучшения методов измерения рамановских спектров, прежде чем этот метод может быть применен достаточно широко для определения констант устойчивости. [c.347]


    Обычно рамановский спектр исследуют в спектральной области, где нет заметного поглощения пробой, потому что иначе детектор не смог бы уловить слабое рамановское излучение. Однако если использовать лазер на красителе с перестраиваемой частотой, близкой по величине, но не совсем совпадающей с частотой максимума поглощения, то чувствительность возрастает во много раз. Это явление, называемое резонансным комбинационным рассеянием [27], еще не нашло широкого аналитического применения, но перспективно в будущем. [c.170]

    Применение рамановской спектроскопии. Как показано на рис. 6-15, рамановский спектр, так же как ИК-спектр, можно использовать для идентификации веществ. Существуют атласы рамановских спектров [29]. Как и при установлении структуры, рамановский и инфракрасный спектры дополняют, а не дублируют друг друга [30] и используются также в количественном анализе. [c.171]

    На практике изучают спектры поглощения электромагнитного излучения с частотами, близкими к частотам колебаний атомов, — инфракрасный (ИК) диапазон (10—10000 сМ ), спектры неупругого (с рождением или уничтожением фонона) рассеяния электромагнитного излучения видимого или ультрафиолетового (УФ) диапазона (комбинационное, или рамановское, рассеяние), рентгеновского излучения или тепловых нейтронов. Инфракрасная спектроскопия и спектроскопия комбинационного рассеяния (КР) позволяют достичь максимального разрешения по энергиям, но из-за малого волнового числа первичного излучения дают информацию (если пренебречь многофононными эффектами, имеющими весьма малую интенсивность) только о колебательных состояниях вблизи центра зоны Бриллюэна (оптическим модам при квазиимпульсе, равном нулю). Кроме этого ограничения в обоих методах существуют правила отбора по симметрии ё спектрах поглощения (ИК спектрах) наблюдаются колебательные моды, характеризующиеся изменением дипольного момента, а в спектрах КР — колебания, при которых изменяется квадрупольный момент. Таким образом, эти две методики дополняют друг друга, и для получения более полной информации о колебательном спектре изучаемого вещества желательно иметь оба спектра. В то же время часть колебаний оказывается неактивной ни в ИК спектрах, ни в спектрах КР (так называемые немые моды). Применение для исследования колебательной структуры твердых тел неупругого рассеяния нейтронов лишено всех упомянутых выше ограничений, но в значительной степени ограничено существенно меньшим разрешением и необходимостью много большего количества вещества для проведения эксперимента. Так, спектры неупругого рассеяния нейтронов на различные углы позволяют, в принципе, определить дисперсионные кривые для всех колебательных мод. Однако низкое разрешение приводит к тому, что подобный анализ возможен лишь для относительно простых систем, а в большинстве случаев возможно рассмотрение только усредненного по всей зоне Бриллюэна суммарного спектра всех колебательных мод. [c.272]


    В рамановской спектре изотактического полипропилена при —268- 250°С наблюдались полосы поглощения, относящиеся к материалу кюветы [673]. Для рамановского спектра ориентированного полипропилена характерно наличие зависимостей между степенью кристалличности и ориентацией цепи [674,675]. В работе [676] обсуждался лазерный романовский спектр спирального синдиотактического полипропилена, а в работе [677] описано применение низкочастотной спектроскопии в дальней ИК-области для изучения степени кристалличности полипропилена. [c.187]

    В предыдущих разделах мы рассматривали принципы генерации сигналов, основные применения и способы обработки колебательных спектров. В этом разделе более подробно будет разобрана важнейшая, в основном качественная, информация о функциональных группах, которую можно получить из различных спектральных диапазонов ближний, средний, дальний ИК-диапазоны и область рамановского эффекта. [c.192]

    Использование лазерных (в УФ/вид.-области) источников возбуждения приводит к усилению чувствительности почти на шесть порядков. Лазерное излучение можно настроить достаточно близко к длине волны максимального поглощения. Резонансные рамановские спектры можно получить при концентрации определяемого вещества до 10 М Следует учитывать, однако, возможность деструкции органических соединений под действием коротковолнового лазерного излучения. Кроме того, этим методом можно успешно определять только нефлуоресцирующие вещества (почему ). Наиболее важная область применения КР-спектроскопии на сегодняшний день— анализ биологических образцов, например определение степени окисления железа, связанного в комплекс с гемоглобином в разбавленных водных растворах. В этом случае можно зарегистрировать полосы тетрапиррольного хромофора с миниммь-ным влиянием других КР-сигналов молекулы, которые не усиливаются селективным возбуждением. [c.198]

    В последнем разделе (гл. VII, 5) автор попытался описать состояние в некоторых системах, в которых ионы металла всегда имеют два определенных координационных числа. Аналогичные рассуждения можно привести для систем, где ионы металла имеют только одно координационное число в случае одних лигандов (например, ионы кобальта (II) и никеля по отношению к воде и аммиаку), но два координационных числа в случае других лигандов. Здесь просто следует обратить внимание на следующие факты. Системы роданидных комплексов золота (III) и цианидных комплексов никеля с четырьми плоскими связями и остаточной способностью к дальнейшему комплексообразованию (см. стр. 66) напоминают систему аммиачных комплексов меди (II). Условия в системах галогенидных комплексов кобальта (11) (с тетраэдрическими и октаэдрическими связями), так много обсуждавшихся в литературе, можно, по-видимому, сравнить с условиями в системах аммиакатов цинка и кадмия. Кроме того, стоит упомянуть, что соображения относительно пространственной структуры свободных комплексных ионов являются весьма предположительными. По-видимому, чтобы получить более точные ответы на эти вопросы, необходимы дальнейшие исследования, и прежде всего исследование рамановских спектров с применением современной техники. [c.112]

    В то время как потенциометрическое определение константы ионизации занимает всего лишь 20 мин, применение спектрофотометрического метода в ультрафиолетовой области спектра для той же цели требует большую часть рабочего дня. Тем не менее, этот метод оказывается удобным для определения кон- стант плохо растворимых веществ, а также для работы при очень малых или очень больших значениях pH, когда стеклян-ный электрод непригоден. Спектрофотометрический метод может быть использован лишь в тех случаях, когда вещество поглощает свет в ультрафиолетовой или видимой области и максимумы поглощения соответствующих ионных форм находятся на различных длинах волн. Спектрофотометрические определения всегда связаны с потенциометрическими, поскольку спектральные измерения проводятся в буферных растворах, значения pH которых определяются потенциометрически. Потенциометрическое определение констант ионизации путем измерения концентрации ионов водорода не связано непосредственно с определением неизвестных (исследуемых) веществ. При спектрофотометрическом же методе измеряются сдвиги спектральных линий, обязанные присоединению протона к неизвестному (исследуемому) веществу (глава 4). Рамановские спектры и ядерный магнитный резонанс позволяют определять константы ионизации даже таких сильных кислот, как азотная и трифторуксусная [c.17]

    Рамановская спектроскопия основана на исследовании спектров рассеяния света. При столкновении фотона с молекулой может иметь место упругое соударение, при котором фотон не теряет энергию, но изменяет направление своего движения. Такое рассеяние известно под названием рэлеевского и лежит в основе метода определения молекулярных весов соединений. Соударения могут быть также иеупругими они характеризуются тем, что энергия молекулы и фотона изменяется. Поскольку эти изменения носят квантовый характер и определяются колебательными и вращательными уровнями молекулы, анализ спектра рассеянного света (спектра Рамана) дает почти ту же информацию, что и обычный инфракрасный спектр. Необходимо, однако, помнить один момент правила отбора в этих двух случаях различаются. В инфракрасной спектроскопии разрешены одни переходы, в раман-спектро-скопии — другие. Таким образом, имеет смысл снять и тот и другой спектр исследуемого образца. До недавнего времени раман-спектроско-пия находила весьма ограниченное применение из-за малой интенсивности рассеянного света. Однако использование для возбуждения лазеров существенно повысило ценность указанного метода [16—20]. В качестве примера на рис. 13-4,5 приведен раман-спектр 1-метилурацила. Заметим, что интенсивность полосы амид II (относительно полосы амид I) в раман-спектре значительно меньше, чем в инфракрасном спектре поглощения. Особый интерес представляет резонансная раман-спектроскопия [19—21], где используется лазерный пучок с длиной волны, соответствующей длине волны электронного перехода. Рассеяние света при этом часто существенно усиливается на частотах, которые отличаются от частоты лазера на частоту рамановского рассеяния, происходящего на группах хромофора или на группах молекулы, соседствующей с хромофором. Несмотря на определенные экспериментальные трудности, указанный метод позволяет изучать структурные особенности какого-либо конкретного участка макромолекулы. [c.13]


    Инфракрасные, рамановские и микроволновые спектры в неорганической химии в большей мере применялись для изучения простых молекул и в меньшей—для комплексов (см. главу 1). Тем не менее следует отметить применение инфракрасных и раман-спектров для подтверждения тетраэдрического строения молекулы Ni( O) ( rawford, Horowitz, 1948) и для выяснения формы молекул других карбонилов металлов. Спектральные исследования в химии комплексных соединений нуждаются в дальнейшем развитии. Эти исследования могут дать ценные результаты как для установления прочности связей, так и для стереохимии. [c.261]

    Роль рамановских полос при измерениях спектров испускания и возбуждения слабой флуоресценции мы обсудим в разделе V, В, здесь же упомянем лишь о возможности применения поляризаторов с целью уменьшения влияния этих полос. В работе [74] были получены степени деполяризации главных рама-Н вских полос четырех растворителей воды 0,23, этанола 0,23, хлороформа 0,28 и циклогексана 0,31. Эти значения гораздо меньше / , и авторы сделали вывод о том, что упомянутые полосы обусловлены полносимметричными колебаниями. Если на пути пучка флуоресценции поместить поляризатор, то интенсивность рамановских полос понизится в 2—3 раза сильнее, чем интенсивность полностью деполяризованной флуоресценции. [c.71]

    Как подчеркнул Кримм (1960), сравнение активных в инфракрасной и рамановской области частот колебаний полиэтилена и политетрафторэтилена позволяет отметить для них некоторые одинаковые характерные черты. СРг-Валентные, Ср2-деформационные и С—С-валентные колебания смещены в область более низких частот с коэффициентом смещения примерно 1,89. Этого можно ожидать, если считать, что единственной причиной изменения этих типов колебаний является изменение массы. Однако коэффициент смещения для Ср2-веерных, крутильных и маятниковых колебаний составляет от 2,2 до 5,7. Используя в качестве ориентира данные инфракрасных спектров и спектров комбинационного рассеяния, табулированные Криммом (1960), можно оценить вклад в теплоемкость оптических колебаний. На рис. П1. 21 показана скелетная теплоемкость полиэтилена и политетрафторэтилена, рассчитанная путем вычитания вклада оптических колебаний из экспериментальных значений теплоемкости. При температуре около 60 К вклад веерных, крутильных и маятниковых колебаний СРг-группы составляет уже около 10%. При 160 К примерно 50% теплоемкости связано с семью оптическими типами колебаний. В противоположность этому вклад оптических колебаний в теплоемкость полиэтилена при 160 К составляет менее 2%. Применение выражения [c.205]


Смотреть страницы где упоминается термин Рамановские спектры, применение для: [c.16]    [c.192]    [c.399]    [c.192]    [c.185]    [c.192]    [c.185]   
Физическая химия растворов электролитов (1950) -- [ c.0 ]

Физическая химия растворов электролитов (1952) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Рамановские спектры применение для проверки чувствительности прибора

Рамановские спектры, применение для исследования диссоциации

Спектр рамановский



© 2025 chem21.info Реклама на сайте