Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление литийорганических соединений

    Чтобы предотвратить окисление, литийорганические соединения, как правило, получают в атмосфере, свободной от кислорода. Обычно для вытеснения воздуха и создания инертной атмосферы используют азот .  [c.242]

    Прн окислении литийорганических соединений кислородом воздуха в растворе конечными продуктами являются спирты (фенолы) в виде их литиевых солей. Промежуточными продуктами являются гидропероксиды и их соли  [c.251]


    Окисление литийорганических соединений. При регулируемом окислении литийорганические соединения превращаются в спирты  [c.334]

    Для рутинных, некритических количественных оценок свежеприготовленных растворов литийорганических соединений аликвоту анализируемого раствора добавляют к воде, а затем титруют стандартным раствором кислоты. Однако это простое определение суммарного содержания оснований может дать завышенное значение, если присутствует гидроксид лития (в результате гидролиза литийорганического соединения) или алкок-сид (в результате окисления или разложения растворителя -эфира). [c.25]

    Присоединение литийорганического соединения к простому азометиновому звену пиридина или другого азотсодержащего ароматического гетероцикла - хорошо изученная общеупотребительная реакция (см. Основную литературу, А, Г(П)). Ее применяют обычно для достижения полного замещения в кольце с промежуточным элиминированием гидрида лития или окислением дигидро-интермедиата, однако используются и другие реакции первичного аддукта. Некоторые реакции, включающие начальное присоединение фениллития к пиридину, описаны ниже. Некоторые хорошо изученные примеры присоединения к другим гетероциклам приведены в табл. 5.1. [c.63]

    Переход углерода из восстановленной в окисленную форму в общем означает изменение знака поляризации связи между атомом углерода и гетероатомом, так что, например, в литийорганических соединениях Ы атом [c.23]

    Замечено, что некоторые соединения, которые можно получить этим методом, например триметилбор или тетраметилсилан, летучи и отгоняются по мере образования их можно собрать, если к концу обратного холодильника присоединить ловушку, охлаждаемую сухим льдом или жидким азотом. В случае многих соединений, включая алкильные производные бора и алюминия, можно избежать опасности самопроизвольного воспламенения продукта, если до прибавления реагента заполнить аппаратуру сухим азотом и принять меры против попадания воздуха в колбу. Применение азота целесообразно и в тех случаях, когда образующиеся продукты самопроизвольно не воспламеняются, так как азот защищает реактив Гриньяра или литийорганическое соединение от окисления, вследствие чего выход увеличивается. [c.68]

    Из каких литийорганических соединений при регулируемом окислении могут быть получены спирты  [c.99]

    При действии кислорода на эфирные растворы алифатических литийорганических соединений происходит окисление их до органических гидро-яер екисей [18—22] [c.43]


    Реакции пиридина с алкил- или ариллитиевыми производными протекают в две стадии первоначально происходит присоединение литийорганических реагентов с образованием Ы-литиевых солей дигидропиридинов, которые затем превращаются в замещенные ароматические пиридиновые структуры в результате окисления (например, воздухом), диспропорционирования или потери гидрида лития [30]. Образование Ы-литиевых производных дигидропиридинов можно зафиксировать спектрально, некоторые из таких соединений могут быть вьщелены [31]. Атака литийорганическими реагентами практически всегда протекает по а-положению в случае 3-замещенных пиридинов обычно реакция прохо- [c.112]

    Следуя той же логике рассуждений, мы приходим к выводу, что образование литийорганических соединений или реактивов Гриньяра при действии металлов (восстановителей) на алкилгалогениды есть неизогинсическая восстановительная реакция, при которой субстраты с уровнем окисления 1 восстанавливаются до соединений с уровнем окисления О, отвечающим насыщенным углеводородам 2 . [c.106]

    Из каких литийорганических соединений при регулируемом окислении могут быть получены спирты изопропиловый и бгор-бутилкарбинол Напишите уравнения реакций. [c.104]

    Подобно реактивам Гриньяра, литийорганические соединения взаимодействуют с кислородом, в результате чего образуется сложная смесь продуктов. Однако основным продуктом (после обработки разбавленной кислотой) обычно бывает спирт. В нижеприведенном примере окисление лптпйорга-нического соединения приводит к спирту с выходом 70%  [c.242]

    Литий Li (лат. lithium, от греч. lithos — камень). Л. — элемент I группы 2-гс периода периодич. системы Д. И. Менделеева, п. н. 3, атомная масса 6,939. Л. был открыт в 1817 г. Достаточно широко распространен в природе (горные породы, минеральные источники, морская вода, каменный уголь, почвы, животные и растительные организмы). Л.—серебристо-белый, самый легкий металл, принадлежит к щелочным металлам. В соединениях Л. проявляет степень окисления Ь1. На воздухе тускнеет вследствие образования оксида LiaO и нитрида Li ,N. С водой реагирует менее энергично, чем другие щелочные металлы. Гидроксид Л. является сильным основанием. Л. окрашивает пламя в карминово-красный цвет. Получают Li электролизом хлорида лнтия. Л. Li имеет большое значение для ядерной энергетики его изотоп применяется для получения трития Ы -р 0 = Н -Ь jHe. Л. используют для изготовления регулирующих стержней в атомных реакторах, как теплоноситель в урановых реакторах. Л. применяют в черной и цветной металлургии, в химии (литийорганические соединения). Соединения Л. применяются Б силикатной промышленности и др. [c.77]

    В Колбе 14 в атмосфере азота приготовляют раствор бутиллития его концентрацию определяют двойным титрованием. Углекислый газ получают в колбе /, очищают пропуская через промывную склянку 4, охлажденную до —80 , и переводят в емкость 3. Требуемый объем бутиллития передавливают азотом в калиброванный реакционный сосуд 7 через фильтр из стекловаты 13. Трубка 10, которую можно охлаждать сухим льдом, содержит эфирный раствор галогенидов после внесения этого раствора в сосуд 7 образовавшийся литийалкил промывают безводным эфиром, который хранится в сосуде 8 над металлическим натрием эфир под азотом выпускают через сифон 6 в эвакуированный сосуд, погруженный в охлаждающую смесь. (Сухой литийалкил при соприкосновении с воздухом Воспламеняется.) Смесь перемешивают закрытой магнитной-мешалкой 11, два внешних стержневидных магнита 9 которой вращаются мотором. Неабсорбированную или выделившуюся при окислении реакционной смеси двуокись углерода вымораживают в сосуде 3, а затем потоком азота подают в колонку 2 со-щелочью. Реакционная система соединена с вакуумным насосом в точке 5 чистый азот можно ввести в точке 12. В перемешиваемый раствор 23,8 ммоля н-бутиллития в 29 мл эфира прибавляют в течение 5 мин 4,74 ммоля высушенного в вакууме га-броманилина, растворенного и мл эфира. Раствор по мере прибавления веществ охлаждают и перемешивают еще в течение 1,5 час после того, как начнет выделяться ярко-желтый осадок литийорганического соединения. Этот осадок появляется через 20—40 мин в зависимости от срока хранения образца к-бутиллития. Увеличение продолжительности реакции от 1 до 3 час не влияет на выход. Тонкий, быстро выпадающий осадок промывают безводным эфиром до тех пор, пока количество непрореагировавшего бутилллития не-уменьшится до вычисленной величины 0,1 %. Затем литийалкил суспендируют в эфире, систему откачивают и проводят карбонизацию при —80° с 1,029 ммоля радиоактивной двуокиси углерода. Реакционную смесь подкисляют 8 л(л 6 н. раствора соляной кислоты и помещают в экстрактор Сокслета. В течение 4—8 час проводят непрерывную экстракцию эфиром эфирный слой отбрасывают. Водный раствор подщелачивают едким кали и экстракцию повторяют. Затем водный раствор доводят до pH 3 и экстрагируют га-аминобензойную кислоту эфиром в течение 8 —16 час. Отогнав эфир, получают неочищенную га-аминобензойную кислоту (т. пл. 184—185°) с выходом 32,8% в расчете на использованный карбонат бария или 48,2% в расчете на прореагировавшую двуокись углерода. [c.681]


    Однако одновременно протекают многие побочные реакции, и выходы искомых продуктов часто очень низки в недавнем исследовании выходы фенолов из ариллитиевых соединений составляли от 34 до 52% [1]. Другие примеры собраны в Основной литературе, А. Исключением из этого общего правила является окисление енолятов лития, которое может давать хорошие выходы как гидрокси-, так и гидропероксипроизводных, как показано в нижеследующем примере. Другие примеры реакций литийорганических соединений с молекулярным кислородом приведены в работах [2-4]. [c.127]

    Диазины легко реагируют с алкил- и ариллитиевыми соединениями и реактивами Гриньяра с образованием дигидроадцуктов, которые могут быть превращены в соответствующие ароматические соединения окислением перманганатом калия или 2,3-дихлор-5,6-дициано-1,4-бензохиноном. С литийорганическими соединениями пиримидины реагируют по положению С(4) [13], а пиридазины — [c.261]

    Следуя той же логике рассуждений, мы приходим к выводу, что образование литийорганических соединений или реактивов Гриньяра при действии металлов (восстановителей) на алкилгалогениды есть неизогипсическая восстановительная реакция, при которой субстраты с уровнем окисления 1 восстанавливаются до соединений уровня окисления О, отвечающего алканам. Таким образом, получается, что металлоорганические соединения оказываются уникальными функциональными производными, имеющими нулевой уровень окисления. Этот довольно парадоксальный вывод подтверждается тем, что гидролиз этих соединений, т. е. заведомо изогипсическая реакция, приводит именно к углеводородам  [c.135]

    Методы получения. Литийорганические соединения образуются при взаимодействии металлического лития с галогенуглево-дородами Б растворителях, которые взаимодействуют с ионом металла (сольватируют металлоргапическое соединение), например в тет-рагидрофуране, диэтиловом эфире и других эфирах. Реакцию проводят в инертной атмосфере (N2, Аг), чтобы избежать реакции окисления кислородом воздуха  [c.249]

    Один из современных лабораторных методов синтеза 1,3-диенов заключается в окислении винилкупратов. Винилкупраты образуются как промежуточные соединения из винильных литийорганических соединений и солей одновалентной меди и тотчас же окисляются до 1,3-диенов. [c.341]

    С другой стороны, редакцией были исключены статьи на темы, уже освещенные в нашей химической литературе, а также статьи по тем вопросам, по которым подготавливаются более подробные монографии и обзоры. Так, иапример, выпущена статья Д. Кестера Реакции, протекающие при каталитическом участии фтористого бора , так как эта тема обстоятельно освещена в монографии А. В. Топчиева [Л. В. Топчиев, Я. М. Паушкина, Соединения фтористого бора как катализаторы в реакциях алкилирования, полимеризации и конденсации, Гостоптехиздат, 1949]. Статьи Диеновый синтез и Окисление двуокисью селена (из немецкого издания) выпущены вследствие того, что на эти темы в настоящее время подготавливаются монографии, в которых будет дан более современный обзор материала. Статьи Методы рода-нирования органических соединений и Восстановление по Меер-вейну-Пондорфу выпущены потому, что более подробные обзоры помещены в сборниках Органические реакции . По этим же причинам сокращена статья Синтезы с помощью диазометана и из статьи Окисление посредством тетраацетата свинца исключен обзор по окислению йодной кислотой. Наконец, статью Г. Виттига Синтезы с помощью литийорганических соединений редакция не сочла целесообразным включить в переводное издание сборника вследствие того, что эти синтезы более подробно и обстоятельно описаны в I части многотомника Синтетические методы в области металлоорганических соединений . [c.6]


Смотреть страницы где упоминается термин Окисление литийорганических соединений: [c.304]    [c.135]    [c.131]    [c.20]    [c.374]    [c.131]    [c.304]    [c.310]    [c.199]    [c.7]    [c.417]    [c.47]    [c.310]    [c.217]   
Органическая химия (1990) -- [ c.251 ]




ПОИСК





Смотрите так же термины и статьи:

Литийорганические соединени



© 2025 chem21.info Реклама на сайте