Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворитель влияние на разложение

    Величина Е,/2 при данных условиях представляется наиболее подходящей для характеристики механизма электродного процесса как возможно полно исключающая влияние побочных процессов (в частности, комплексообразования) на электродный процесс. В целом сходимость данных, полученных различными авторами в неводных растворах, значительно хуже, чем в водных. Основные причины этого заключаются в неодинаковой степени обезвоживания и очистки растворителя, частичном разложении растворителя, использовании различных фоновых электролитов. Кинетику происходящих катодных процессов характеризуют данные табл. 7 приложения [134]. [c.77]


    Продукты реакции из полимеризатора проходят через ряд аппаратов, где происходит разложение катализатора, отгонка растворителя, заправка каучука противостарителем, удаление влаги, формование и упаковка. Удаление катализатора очень важно, так как под его влиянием каучук подвергается деполимеризации даже при комнатной температуре. [c.43]

    В работах приводятся данные о влиянии количества растворителя на полноту извлечения н-алканов. Верхний предел ограничивается разложением комплекса. [c.70]

    Большое влияние на свойства осажденных контактов оказывает среда и атмосфера, в которой проводится разложение их солей. Активность значительно возрастает, если ооли разлагаются в органическом растворителе (растительное масло, саломас, парафин) при пониженном или. обычном давлении. Среда, особенно при использовании масла, препятствует спеканию никелевых частиц в мо(мент образования, способствует, по данны м рентгенографии, образованию мелкокристаллических зерен никеля размером 5,5— [c.30]

    Другой реакцией разложения вещества является сольволиз. В этой реакции под влиянием растворителя разрываются полярные и поляризованные межатомные связи, причем, как правило, растворитель образует соединения с продуктами реакции. При добавлении в пиросерную кислоту воды происходит гидролитическое расщепление с образованием двух молекул серной кислоты  [c.429]

    Представление о влиянии на относительное расположение металлов в ряду напряжений природы аниона и природы солей — растворителей дают электрохимические ряды металлов, построенные Делимарским с сотрудниками на основании измерения напряжения разложения расплавленных галогенидов (табл. 33). [c.244]

    Поскольку разложение сравнительно нечувствительно к влиянию растворителя была предложена изящная методика для демонстрации /-напряжения (циклическое напряжение) в свободнорадикальных реакциях В табл. 1У-2 сум- [c.49]

    Коксование — это процесс выделения новой фазы. Влияние хода термического процесса на концентрацию асфальтенов в жидких продуктах и на растворимость асфальтенов в них может сильно изменять состояние асфальтенов и процесс коксообразования. Для этого процесса большое значение имеет природа дисперсионной среды, т. к. процесс разложения асфальтенов может происходить в плохом растворителе (преимущественно содержащем алканы) или хорошем — ароматическом. Поэтому определение оптимального состава нефтяных остатков, подвергаемых коксованию, является важной задачей, Реологические характеристики и групповой состав нефтяных остатков являются необходимыми данными, позволяющими детально разобраться в процессе. Так, быстрое возрастание вязкости коксующейся массы приводит к образованию кокса с мелкозернистой структурой и беспорядочной ориентацией осей жидких кристаллов мезо-фазы. [c.104]


    В тех случаях, когда изменение константы скорости реакции в зависимости от природы растворителя относительно невелико, параметры активации могут свидетельствовать о достаточно сильных взаимодействиях между растворителем и растворенным веществом [172, 227]. При переходе от циклогексановой среды к ацетонитрильной скорость разложения пероксида изменяется всего лишь в 2,3 раза, что соответствует изменению АО только на 4 кДж-моль . Однако параметры активации АЯ и Д5 свидетельствуют о сильном влиянии растворителя на ход разложения (ААЯ = 41 кДж-моль , АА5 = 94 Дж-моль -К ). Анализ этих параметров активации свидетельствует о том, что выигрыш энергии за счет сольватации радикалоподобного активированного комплекса, который должен был бы повысить скорость разложения, компенсируется снижением энтропии вследствие большей упорядоченности молекул растворителя в непосредственном окружении активированного комплекса, в результате чего скорость реакции в растворе почти не отличается от ее скорости в газовой фазе. [c.270]

    Три варианта камер с принудительным потоком растворителя, используемые в 1985 г., представляют собой ненасыщенные сэндвич-камеры, в которых неизбежно расслоение подвижной фазы в слое во время элюирования. Единственным способом устранения этого вредного эффекта является продувка слоя потоком газа, содержащего пары многокомпонентной подвижной фазы, непосредственно перед началом элюирования (когда пластинка уже установлена в камеру и подготовлена к работе). Кроме того, влияния разложения подвижной фазы можно избежать, если вводить образец уже после начала элюирования (когда все образующиеся фронты уже прошли ми.мо стартовой линии). Центробежный плоскостной хроматограф с вращающейся пластинкой (Rota hrom, фирма Petazon Ltd, Цюрих, Швейцария) начал выпускаться в 1987 г. Прибор пригоден для обеспечения аналитических и препаративных разделений обеспечивает постоянство скорости потока через разделяющий участок длиной 10 см может использоваться в круговом режиме и (за счет прорезания соответствующих борозд в слое) в "антикруговом" или линейном режимах [298]. Метод плоскостной жидкостной хроматографии с принудительным потоком растворителя еще является новшеством. Разрабатываются удобные детекторы, дающие возможность регистрации разделения в реальном масштабе времени. Однако даже на данно.м этапе развития этот метод дает возможность сочетать (при сопоставимой продолжительности анализа) высокую разрешающую способность, свойственную для колоночной [c.273]

    Писаржевский и Глюкман [42] исследовали влияние растворителя на каталитическое разложение перекиси водорода над платиной и двуокисью марганца на угле. Растворителями служили вода, эфир, смесь эфира и воды и ацетон. Каталитическое разложение в водных растворах происходит мономолекулярно. Кинетика реакции сильно меняется, если в качестве растворителя употреблять смесь воды и эфира скорость реакции в воде с эфиром всегда выше, чем в чисто й Воде или чистом эфире. Наиболее важный фактор во влиянии растворителя на разложение перекиси водорода — действие эффективного пространства растворителя. Оно накладывается на взаимодействие молекул растворителя с ионами действующ его как катализатор металла и ведет к образованию сольватов ионов, участвующ,их тем или иным способом в катализе. Сольватация молекул перекиси водорода, повидимому, не играет особой роли. Пользуясь в качестве растворителя ацетоном, который в противоположность эфиру смешивается с водой во всех пропорциях, Рлюкман [19] обнаружил, что вода ускоряет реак цию, и присутствие 10—15% воды необходимо в этом случае для получения того же эффекта, как и при содержании 0,7% воды в эфире. Небольшое изменение концентрации растворенной в эфире воды (0,7—1,2%о) всегда сильно влияет на скорость реакции (20—30 раз). Для достижения такого же изменения скорости реакции в растворе ацетона приходится добавлять гораздо больше воды, именно до 80%. Кривые, изображающие зависимость скорости реакции от содержания воды, в случае эфира имеют максимум, но этого не наблюдается у ацетона. [c.682]

    На процесс образования комплексов отрицательно сказывается присутствие во взаимодействующих веществах примесей и загрязнений. Так, А. В. Топчиев с сотрудниками установили, что к-октадекан высокой степени чистоты способен образовывать комплексы с чистым карбамидом без растворителей-активаторов [47]. Недостаточно же очищенный к-октадекан комплексов с карбамидом при непосредственном контакте не дает, и для образования комплекса требуется добавка активатора. Выло отмечено отрицательное влияние па процесс комплексообразования смолистых веществ [48]. Кроме них, отрицательно действуют на процесс комплексообразования также нафтеновые кислоты и продукты окисления обрабатываемого сырья воздухом [38, 49]. Препятствуют комплексообразовапию и продукты разложения карбамида, образующиеся при его регенерации. [c.147]


    На распад перэфиров этого типа значительное влияние оказывают растворители Показано, что только в сильнополярном растворителе, например в уксусной кислоте, может происходить ионный распад с образованием 15% ацетона в неполярных растворителях эти перэфиры распадаются гомолитически с ускорением в связи с увеличением диэлектрической проницаемости растворителя Свободнорадикальное разложение трет-бутил-о-тиофенилпербензоата доказано с помощью перехватчиков радикалов 231. Определена величина р=1,3 по уравнению Гамметта для заместителей СНз-, С1-, НОг-, находящихся в пара-положении фенильного ядра пербензоатов. [c.42]

    Разноречивые результаты, полученные химиками при изучении влияния индифферентного растворителя на скорости органических реакций в конце первого десятилетия XX в. [243—245], вновь показали необходимость выяснения механизма действия растворителя на молекулы реагентов. Уже в 1909 г. Хальбан, рассмотрев влияние растворителей на разложение триэтилсуль-финбромида, отметил сложный характер этого влияния, выражающийся как в изменении скорости реакции, так и в сдвиге [c.68]

    Мономолекулярные реакции в растворах. Как уже было показано, некоторые мономолекулярные реакции идут в газовой фазе, примерно, с теми же константами скорости, что и в известном числе растворителей, например, разложение азотного ангидрида и изомеризация -пинена. Поэтому вполне возможно, что в этих случаях растворитель не оказывает никакого влияния, ни активирующего, ни дезактивирующего. Однако в других случаях есть много оснований полагать, что молекулы растворителя могут принимать участие в активирующих столкновениях. Поэтому при рассмотрении такой реакции требуется знать кое-что о числе столкновений в единицу времени между молекулами растворителя и растворенного вещества. Даже в таких мономолекулярных реакциях, которые были только что упомянуты, нельзя утверждать, что столкновения между растворителем и растворенным веществом не имеют никакого влияния на реакцию. Правда, ввиду поразительного совпадения между константами скорости для газовой фазы и для ряда растворителей, представляется весьма маловероятным, чтобы подобные столкновения могли играть серьезную роль в активации реагирующих молекул. Тем не менее, нужно указать, что Мельвин-Юз (1932 г.) высказал противоположный взгляд. [c.203]

    Уорнер Кажется, должно быть расхождение между взглядами английских и американских специалистов в отношении влияния разложения растворителя на удержание рутения в промытом растворителе. Как показали Хуггарт и Уорнер в Гатлинбурге, раствор ТБФ в керосине после разложения в системе с HNO3 до 35 вт-ч л не удерживал рутения, при 60 вт-ч л установлено некоторое удержание. В системе, содержащей продукты деления (Zr, Ru и др.) и 10—М ДБФ, ДБФ не оказывает никакого влияния на удержание рутения, и, наконец, наш опыт работы говорит о том, что никакого заметного влияния на удержание рутения разложение ТБФ не оказывает. [c.70]

    Существенней особенпостью процесса является влияние растворителя на скорость распада перекиси, эффективность инициирования полимеризации, а так.же ка функциональность полимера частично природу концевых групп. Используя различные растворители, например метанол, ацетон, этанол, тетрагидрофуран (ТГФ), этилацетат и меняя условия реакции, можно получить полимеры с функциональностью от нуля до трех гидроксильных групп на макромолекулу [32]. Наряду с гидроксильными группами в полимере образуется некоторое количество альдегидных групп в результате индуцированного разложения перекиси и других побочных реакций [33]. [c.423]

Таблица 31. Влияние растворителя на энергию активации Ед и предэкспоненциальный множитель А в реакции разложения N305 Таблица 31. <a href="/info/132078">Влияние растворителя</a> на <a href="/info/2894">энергию активации</a> Ед и <a href="/info/6213">предэкспоненциальный множитель</a> А в реакции разложения N305
    Влияние природы растворителя на скорость реакций в растворах изучалось Н. А. Меншуткиным, Н. А. Шиловым, С. Глестоном и др. Было установлено, что значительное число реакций имеют почти одинаковые скорости как в газовой среде, так и в ряде растворителей, независимо от природы последних. Так, например, мономолекулярная реакция разложения пятиокиси азота N Oj в газовой фазе при 20 имеет константу скорости, равную 3,4-10- e/ -i. При использовании в качестве растворителя хлороформа, дихлорэтана, нитрометана, жидкого брома и четыреххлористого углерода константы скорости соответственно равны 3,7-10 4,2-10-  [c.351]

    Как было отмечено ранее (глава 1.1), хлориды металлов, а по мнению некоторых авторов — катионы металлов вообще, оказывают каталитическое воздействие на процёсс разложения НСЮ. При разработке процесса получения хлоргидринов в неводных средах было интересно выяснить влияние некоторых примесей как неорганического, так и органического характера на скорость разложения НСЮ в среде органического растворителя, в частности в среде МЭК. Кроме того, необходимо было проанализировать влияние неорга1шческих добавок в водно-солевом растворе при совместном их присутствии с высококонцентрированным хлоридом натрия.. [c.71]

    Свойства галоидных алкилов. Низшие члены ряда, за исключением иодистых алкилов, представляют собой бесцветные газы следующие за кими гомологи — жидкости высшие галоидные алкилы являются при комнатной температуре твердыми (табл. 8). В чистом состоянии все галоидные алкилы бесцветны. Иодистые соединения быстро приобретают красную или коричневую окраску благодаря незначительному разложению их под влиянием света. Низшие галоидные алкилы обладают сладковатым запахом и горят зеленым по краям пламенем. В воде галоидные алкилы почти нерастворимы, но со многими органическими растворителями, например с эфиром нли спиртом, жидкие галоидные алкилы смешиваются в любых еоотношепиях. [c.99]

    Депротеинизация достигается также добавлением сульфата аммония и некоторых органических растворителей [23]. Основная опасность здесь заключается в возможности адсорбции или окклюзии следовых компонентов осадком. Эффективность операции нужно конфолировать в отношении биоматериала и определяемых веществ. Обычно влияние окклюзии сводят к минимуму не добавлением осаждающих агентов к пробе, а наоборот [24]. В последнее время для осаждения белков все чаще применяют ацетонитрил, особенно удобный в тех случаях, когда раствор далее анализируют методом ВЭЖХ Для предотвращения разложения белков следует избегать нафевания, либо использовать мягкие условия их разрушения с помощью ферментов [25]. С этой целью используют трипсин, папаини другие протеиназы. Ткани печени гидролизуют алкалазой, а [c.204]

    Теоретическое исследование кинетики и механизма химических реакций в растворах — намного более сложная задача по сравнению с исследованием газовых реакций, поскольку р растворах реагирующие вещества могут взаимодействовать с растворителем (следует учитывать влияние диэлектрической проницаемости растворителя, степень гидратации, присутствие посторонних компонентов и т. д.). Существует много различных типов реакций в растворах для некоторых из них влиянием растворителя мож но пренебречь (особенно в тех случаях, когда используются неполярные растворители). При некоторых условиях участники реакции взаимодействуют с такой же скоростью, как и в газах, как, например, при разложении N205. Существенным фактором является число столкновений между молекулами реагирующих веществ в растворе (включая растворитель). Дебай и Рабинович провели оценку числа столкновений в растворе, согласно которой оно примерно в три раза больше, чем в газовой фазе. Это согласуется с экспериментальными данными, также подтверждающими, что фактор столкновений для реакций в растворах увеличивается примерно в три раза. Так как энергия активации практически не меняется, скорость реакций в растворе также увеличивается в три раза по сравнению с газовыми реакциями. Для реакций в растворе характерна также небольшая подвижность реагирующих частиц (по сравнению с реакциями в газовой фазе). Для цепных и других реакций, в которых появляются Б качестве промежуточных частиц радика- [c.183]

    Первое направление реализуется для гидротриоксидов силанов. Механизм разложения этих ROOOH подробно изучен на примере гидротриоксида фенилдиметилсилана [117]. Кинетические и активационные параметры распада (высокое отрицательное значение энтропии активации), значительный эффект заместителя, зависимость скорости распада от полярности растворителя, а также отсутствие влияния радикального ингибитора ионола на кинетику распада согласуются с преимущественно молекулярным (> 90%) механизмом разложения. [c.259]

    Витамин К1, Сз1Н4е02, молекулярная масса 450,68, представляет собой подвижное желтое масло нерастворим в воде, плохо растворим в метиловом и этиловом спирте, хорошо — в петролейном эфире и других органических растворителях. Устойчив к действию воздуха и влаги. Витамин можно перегнать без разложения при остаточном давлении < 0,001 мм рт. ст. Он чувствителен к ультрафиолетовому свету, а волны длиной 400—800 нм не оказывают какого-либо влияния [25]. Разбавленные кислоты не действуют на витамин, но щелочи его быстро разрушают. [c.329]

    Были, поставлены исследования по выяснению влияния растворителя на скорость разложения бензадида при различных температурах. При этом было установлено, что не существует никакого npoftoro соответствия между константами скорости реакции и диэлектрической постоянной, дипольным моментом, вязкостью или точкой кипения растворителя. [c.456]

    Существует большое разнообразие в методах получения органических надкислот, и многие растворители было предложено использовать для их получения, выделения и применения п качестве окислителей. Обсуждать здесь подробно соответствующий раздел ХИМИИ надкислот вряд ли уместтю данные по этому вопросу были недавно опубликованы [79]. В каждом отдельном случае метод окисления и выбор растаорителя должны в значи-тс льной степени зависеть от растворимости надкислоты и от строения непредельного соединении и продуктов окисления. Кроме того, устойчивость надкислоты и продуктов окисления в среде растворителя, а также легкость отделения получаемых веществ о г других присутствующих в смеси соединений имеют важное значение при выборе условий реакции. Имеются указания иа то, что растпоритель оказывал влияние на скорость разложения надкислот, а также на скорость их реакции с 11епредсльными соединениями [7, 13, 83, 98 —101]. [c.487]

    По отгонке эфира остается жел говато-бурое масло, не перегоняющееся без разложения даже под уменьшенным давлением. При стоянии оно мало-по-малу закрисгаллизо-вывается. Еще легче наступает кристаллизация, если маслообразный продукт растворить в возможно меньшем количестве горячего спирта. По охлаждении такого раствора, особенно, если прибавить готовый кристаллик в качестве затравки, происходит в изобилии выделение мелких игольчатых кристаллов, и вся жидкость застывает в кристаллическую кашу. При такой обработке лишь весьма незначительная часть ксантогената остается в жидком состоянии, вероятно под влиянием неизбежных примесей. Для очистки отфильтрованный и промытый небольшим количеством спирта продукт перекристаллизовывается еще раза 2—3 из того же растворителя. [c.30]

    На теплостойкость и растворимость кардовых полиарилатов большое влияние оказывает и их физическая структура. Это, в частности, наглядно было установлено на примере политерефталата феиолантрона, структуру которого от аморфной до кристаллической, как оказалось, можно направленно изменять, варьируя условия синтеза или последующей обработки уже готового полимера [21, 51, 52]. Если аморфный полиарилат размягчается при 335-365 °С и растворим во многих органических растворителях, то по мере увеличения степени упорядоченности структуры данного полиарилата круг растворителей, растворящих его, сужается, а теплостойкость увеличивается. Кристаллический полимер растворяется только в смеси фенол-ТХЭ, но очень теплостоек не плавится до разложения. Таким образом, теплостойкость и растворимость кардовых полиарилатов можно направленно варьировать изменением их химического строения и физической структуры. [c.112]

Таблица 5.8. Влияние растворителей иа скорость моиомолекуляриого разложения различных предшественников свободных радикалов [164] Таблица 5.8. <a href="/info/132078">Влияние растворителей</a> иа скорость моиомолекуляриого <a href="/info/355052">разложения различных</a> предшественников свободных радикалов [164]
Таблица 5.9. Влияние растворителей на скорость мономолекулярного разложения эфиров пероксикарбоновых кислот НСОООСНз в соответствии с уравнениями (5.62а) и (5.626) Таблица 5.9. <a href="/info/132078">Влияние растворителей</a> на <a href="/info/9216">скорость мономолекулярного</a> <a href="/info/351798">разложения эфиров</a> пероксикарбоновых кислот НСОООСНз в соответствии с уравнениями (5.62а) и (5.626)
    Из приведенных в табл. 5.9 примеров особо следует остановиться на соединениях 8 [205] и 9 [206]. На скорость их разложения большое влияние оказывает природа растворителя, а гомолитическое расщепление связи 0—0 в этих соединениях осуществляется с участием соседних алкенового заместителя или фенилтиогруппы, как это показано в уравнении (5.64) на примере термолиза грег-бутил-о-фенилтиобензоата [206]. Наблюдаемые в этой реакции с анхимерным содействием относительно [c.257]

    Было исследовано влияние температуры и типа литийорганического соединения на выход продукта металлирования бензотиазола. Эта реакция отличается от других реакций металлирования тем, что она протекает с большой скоростью и что для предотвращения разложения получаемого вещества необходимо поддерживать низкую температуру. Было установлено, что при применении метиллития, фениллития и я-бутиллития выходы продуктов металлирования превышают 68% наилучший выход (89,7 7о) был получен в случае применения я-бутиллития при —75 при условии, что немедленно после прибавления всего количества литийорганического соединения реакция будет прервана [90]. Указанные исследования, повидимому, являются единственными, в которых были сделаны попытки найти оптимальные условия металлирования определенных веществ литийорганическими соединениями. Результаты этих исследований свидетельствуют о том, что всякий раз, когда важным является получение высокого выхода, имеет смысл исследовать влияние растворителя, температуры и природы металлирующего агента. В обычных же ре- [c.358]


Смотреть страницы где упоминается термин Растворитель влияние на разложение: [c.57]    [c.113]    [c.251]    [c.344]    [c.1696]    [c.129]    [c.98]    [c.242]    [c.234]    [c.258]    [c.360]    [c.362]    [c.388]    [c.457]   
Свободные радикалы (1970) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте