Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо коррозионная стойкость

    Олово обладает недостаточно высокой механической прочностью. Нормальный электродный потенциал олова Sn 5A Sn- ++ 2е равен — 0,136 в. Пассивируется олово слабо. Коррозионная стойкость олова в атмосферных условиях, в дистиллированной, пресной и соленой воде очень высока. Этим объясняется широкое применение олова для защиты от коррозии в воде и в атмосферных условиях железа, потенциал которого более отрицателен, чем у олова. Однако так называемая белая (луженая) жесть во влажной загрязненной атмосфере быстро разрушается вследствие пористости защитного оловянного слоя. [c.265]


    В растворах хлорного железа коррозионная стойкость сплавов титан-молибден значительно ниже, чем коррозионная стойкость нелегированного титана (табл. 27), так как молибден обладает низкой коррозионной стойкостью в растворах хлорного железа. [c.70]

    При контакте магния с другими металлами скорость коррозии магния определяется величиной перенапряжения водорода иа этих металлах. Такие металлы, как железо, никель, медь, имеющие низкое перенапряжение водорода, сильно понижают коррозионную стойкость магния менее опасны контакты магния с металлами, имеющими высокое перенапряжение водорода (свинец, цинк, кадмий). [c.274]

    На рис. 17 кривая б зависимости скорости коррозии ряда металлов от рН-среды относится и к поведению железа, коррозионная стойкость его резко снижается в электролитах, pH которых <4. В нейтральных средах скорость коррозии практически не зависит от рН-среды. В щелочных средах коррозия железа [c.81]

    Кроме полупроводниковой техники кремний широко применяется в металлургии для раскисления сталей и придания им повышенной коррозионной стойкости. Для этих целей используется сплав кремния с железом (ферросилиций), получаемый при совместном восстановлении коксом железной руды и кремнезема. Ферросилиций очень устойчив к действию кислот и потому используется для изготовления кислотоупорных изделий. [c.412]

    Коррозионная стойкость железа и углеродистой стали в смеси серной и азотной кислот в присутствии воды зависит от [c.202]

    Примеси, обычно содержащиеся в меди (кислород, сера, висмут, свинец, железо), являются, как правило, вредными. Чем чище медь, тем лучшими механическими свойствами и более высокой коррозионной стойкостью она обладает. Особенно вредной является примесь кислорода, так как эта примесь способствует выделению закиси меди по границам зерен в виде эвтектики, которая является причиной хрупкости и хладноломкости меди при ее обработке в холодном состоянии. При взаимодействии с кислородом и другими окислителями медь не способна к пассивации и защитные пленки на ее поверхности не образуются. [c.246]

    Примесн железа способствуют измельчению структуры и повышению механических свойств меди, ио теплопроводность и коррозионная стойкость металла при этом понижаются. [c.247]

    Никель в чистом виде находит широкое применение в качестве защитного гальванического покрытия для изделий из железа и стали в целях повышения их коррозионной стойкости в атмосферных условиях. Основное применение никель находит в качестве легирующего элемента для изготовления различных марок высококачественных нержавеющих сталей. [c.255]


    Другим материалом на основе меди, который находит широкое применение для изготовления труб теплообменников, является мельхиор. Типичными составами являются 90 Си — 10 N1, 80 Си — 20 N1 70 Си — 30 N1, причем все они могут содержат небольшие добавки железа для увеличения стойкости к воздействию эрозии и коррозии. Состав 70 Си — 30 N1 обладает коррозионной стойкостью к морской воде почти при всех обстоятельствах, но может загрязняться ею. Этот сплав используется также в парциаль- [c.316]

    Добавка марганца к магнию оказывает благоприятное влияние на его коррозионную стойкость. Действие добавки марганца сказывается в подавлении коррозионного влияния железа. Коррозионная стойкость магниевых материалов, содержащих марганец, при наличии железа сверх допустимого значения при прочих равных условиях значительно выше, чем у магния в отсутствие марганца. Поэтому желательны добавки марганца порядка 0,3—0,5%. Добавка марганца изменяет допустимое содержание никеля. В присутствии 0,2% марганца допустимое содержание никеля вырастает до 0,001%, в присутствии 2% марганца — до 0,015%. При наличии в магниевоалюминиевом сплаве 0,2% марганца граничное значение для железа составляет 0,002% даже при содержании в сплаве 2—10% алюминия. [c.542]

    В разд. 4.2 сообщалось о влиянии химической природы материала насадки на разделяющую способность колонны. Насадки для лабораторных колонн в основном изготавливают из стекла, фарфора, глины, различных металлических сплавов и в последнее время также из пластмасс. Предпочтение обычно отдают стеклу и керамическим материалам благодаря их коррозионной стойкости в среде агрессивных жидкостей. Преимущество фарфора заключается в том, что он после обжига становится твердым и не содержит железа, которое может оказывать каталитическое воздействие на разделяемые вещества. Проволочные или сетчатые насадки из нержавеющей стали У2А обеспечивают наибольшую эффективность разделения. [c.415]

    Углеродистые стали обладают низкой коррозионной стойкостью, так как железо вытесняет медь из раствора. Сведения о поведении в этой среде меди, никеля и [c.829]

    Основным легирующим элементом нержавеющих сталей является хром, который облагораживает электродный потенциал стали и повышает ее коррозионную стойкость. Повышение коррозионной стойкости при увеличении содержания хрома в стали происходит скачкообразно. Первый порог коррозионной устойчивости достигается при концентрации хрома, равной 12,8%, что соответствует 1/8 атомной доли хрома в соста,ве стали. Для обеспечения коррозионной стойкости стали это количество хрома должно находиться в твердом растворе железа и не образовывать карбидов. При увеличении его содержания до 18% или до 25—28% достигается второй порог и наблюдается дальнейшее повышение коррозионной стойкости стали. Однако увеличение содержания хрома приводит к понижению механических свойств стали, особенно ударной вязкости, а также затрудняет сварку, вызывая хрупкость сварного шва. Поэтому стали с высоким содержанием хрома после сварки требуют термической обработки. [c.40]

    Катодные включения (например, Си, Р( ) заметно повышают коррозионную стойкость железоуглеродистых сплавов в атмосфере даже при незначительном их содержании (десятые доли процента меди — рис. 272). В процессе коррозии медистой стали в электролит (увлажненные продукты коррозии) переходит и железо, и медь, но ионы последней, являясь по отношению к железу катодным деполяризатором, разряжаются и выделяются на его поверхность в виде мелкодисперсной меди. Медь является весьма эффективным катодом и при определенных условиях, например, при повышенной концентрации окислителя — кислорода у поверхности металла, что имеет место при влажной атмос( ерной коррозии, и отсутствии депассивирующих ионов, способствует пассивированию железа [c.381]

    Среди металлических материалов исключительное положение занимают сплавы на основе железа. Сплавы железа с содержанием углерода до 2% принято называть сталью, а свыше 2% — чугуном. Используемые в настояш,ее время в промышленности стали обычно делят на углеродистые и легированные. Создание новых и интенсификация существующих промышленных процессов заставляет все больше использовать легированные стали, которые обладают повышенной коррозионной стойкостью. Массовая доля средне- и высоколегированных сталей в настоящее время составляет почти 20% от общего количества производимых промышленностью черных металлов. Для легирования используют такие металлы, как никель. [c.175]

    Поскольку примеси в металле играют роль локальных элементов, можно ожидать, что их уменьшение значительно повысит коррозионную стойкость металла. Поэтому, например, алюминий или магний высокой чистоты более устойчивы к коррозии в морской воде или кислотах, чем технические металлы, а специально очищенный цинк менее растворим в соляной кислоте, чем технический. Однако ошибочно полагать, что чистые металлы вообще не подвержены коррозии, как считалось много лет назад, когда была предложена первая электрохимическая теория. Как мы увидим далее, локальные элементы возникают также при изменениях температуры или других параметров среды. Например, на поверхности железа или стали, покрытой пористым слоем ржавчины (оксиды железа), в аэрированной воде отрицательными электродами являются участки поверхности железа в порах оксидного слоя, а положительными — участки ржавчины, открытые для соприкосновения с кислородом. Отрицательные и положительные электродные участки меняются местами и перемещаются по поверхности в ходе коррозионного процесса. [c.22]


    Коррозионное поведение железа и стали в почве в некоторых отношениях напоминает их поведение при погружении в воду. Например, незначительные изменения состава или структуры стали не влияют на коррозионную, стойкость. Медьсодержащая, низколегированная, малоуглеродистая стали и ковкое железо корродируют с приблизительно одинаковой скоростью в любых грунтах [1а, рис. 3 на стр. 452]. Можно предположить, что механическая и термическая обработка не будет влиять на скорость коррозии. Серый литейный чугун в почве, как и в воде, подвергается графитизации. Влияние гальванических пар, возникающих при сопряжении чугуноВ или сталей разных составов, значительно, как и при погружении в воду (см. разд. 6.2.3). [c.181]

    Основную массу марганца выплавляют в виде ферромарганца (сплав 60—90% Мп и 40—10% Fe) при восстановлении смеси железных и марганцевых руд. Около 90% марганца применяется в металлургии для раскисления и легирования сталей. Он придает сплавам железа коррозионную стойкость, вязкость и твердость. Технеций коррозионностоек и устойчив против действия нейтронов, поэтому может применяться как конструкционный материал для атомных реакторов. Рений в основном используется в электротехнической промьшленности и как катализатор. [c.571]

    Основную массу марганца выплавляют в виде ферромарганца (сплав 60—90% Мп и 40—10% Fe) при восстановлении смеси железных и марганцевых руд углем в электрической печи. Около 90% марганца применяется в металлургии для раскисления и легирования сталей. Он придает сдлавам железа коррозионную стойкость, вязкость и твердость. Рений в основном используется в электротехнической промышленности и как катализатор. [c.621]

    Повышение коррозионной стойкости колезоуглеродмстых сплавов при BU OKUX концентрациях серной кислоты объясняется образованием на их поверхности защитного слоя, состоящего из не растворкиого в /45 i сульфата железо..  [c.21]

    Латунь содсрукит до 4Ъ% цинка. Различают простые и специальные латуни. В состав последних, кроме меди и цинка, входят другие элементы, иапример, железо, алюминий, олово, кремний. Латунь находит разнообразное применение. Из нее изготовляют трубы для конденсаторов и радиаторов, детали механизмов, в частности, часовых. Некоторые специальные латуни обладают высокой коррозионной стойкостью в морской воде и [c.571]

    Примерами подобного влияния катодной гетерогенности на коррозионную стойкость металлов являются более легкая пасси-вируемость (при более низкой концентрации НЫОз) чугуна, чем чистого железа, и повышение коррозионной стойкости хромистой [c.318]

    С псвышеггием темиературы опасность сероводородной коррозии углеродистых сталей значительно увеличивается уже при 300° С железо подвергается сильной коррозии. Легирование сталей не менее чем 12% Сг повышает их коррозионную стойкость (рис. 121). [c.154]

    Повышение коррозиониой стойкости железоуглеродистых сплавов при высоких концентрациях серной кислоты объясняется образованием на их поверхности защитного слоя, состоящего из нерастворимого в Н2804 сульфата железа. Как [c.202]

    Предполагается, что в ходе растворения медистой стали вначале в раствор переходят и железо и медь. Медь затем осаждается на поверхности металла и образует в дальнейшем слой окислов, который, взаимодействуя с окислами железа, дает на по-иерхности силава плотный защитный слой. Имеются также указания, что коррозионная стойкость медистых сталей в aтмa f) p-ных условиях объясняется более затрудненной конденсацией на них влаги. [c.207]

    В Советском Союзе распространены две марки железокремнистых сплавов (кремнистых чугунов), различающиеся содержанием кремния и углерода С15 (0,5—0,8% С, 14,5—157о Si) и С17 (0,3—0,8% С, 16,0—18,0% Si). Чем больше в сплаве кремння, тем меньше должно быть углерода. Оптнму.л])Ное содержание углерода соответствует эвтектическому составу для. данного сплава. Благодаря большому сродству кремния к железу, углерод не дает карбидов железа. Силав С17 применяется в тех случаях, когда требуются отливки с повышенной коррозионной стойкостью. [c.239]

    Прочность (500—700 Мн/м ) и более высокую коррозионную стойкость. При содержании в алюминиевой бронзе 5% А1 сплав характеризуется высокими антифрикционными и пластическими свойствами. Снятие внутренних нлпряжений осуществляется путем низкотемпературного отжига бронзы при 360—460° С. Особенно высокой коррозионной стойкостью отличается алюминиевая бронза с содержанием 9,8% А1 и алюминиевая бронза, содержащая дополнительно 4% железа (Бр.АЖ9-4). Хотя этот спла является многофазным, но фазы в нем распределены равномерно и он имеет мелкозернистое строение. [c.251]

    Влияние 1 римесей а коррозионную стойкость алюми 1ия в нс " тральиых растворах и атмосфере значительно больше, чем, например, у железа, меди и других металлоп. Чем чище алюминий, тем выи с С1Ю коррозио ая стойкость. [c.270]

    Алюминиевые сплавы подразделяются на деформируемые и литейные. Деформируемые сплавы отличаются высокой пластичностью и механической прочностью, К таким сплавам относятся, например, дуралюмины, содержащие добааки меди, магния, марганца, кремния, железа упрочняющей фазой в них являются соединение АЬСи и другие интерметаллиды. Дуралюмины характеризуются, однако, сравнительно невысокой коррозионной стойкостью, поэтому их часто применяют в плакированном виде, т. е. [грокатанными вместе с покрывающим их листовым чистым алю-ми [ием. Литейные сплавы содержат легирующих добавок больше предельной растворимости. Из них готовят различные фасонные отливкн. К литейным сплавам относятся содержащие до 7% кремния (силумины) или до 10% магния последние отличаются высокой коррозионной стойкостью. Алюминиевые сплавы применяют в самолетостроении, судостроении, ракетостроении, транспортном машиностроении (вагоны, автомобили, тракторы и т. п.), промышленном и гражданском строительстве (подъемно-транспортные сооружения, мосты, сборные дома, трубы для нефтедобывающей промышленности), а так /ке для орошения и дождевания в сельском [c.258]

    Для изготовления деталей насосов, клапанов, арматуры рекомендуются нпкель-молнбденовые сплавы. Коррозионная стойкость магния резко снижается при наличии в растворе солей железа и никеля даже в небольших количествах. [c.837]

    Фосфорная кислота является окислителем, поэтому такие металлы, как молибден, никель, цирконий, склонны к пассивации. При нормальной температуре скорость коррозии железа возрастает по мере повышения концентрации кислоты лишь до определенного предела. В концентрированной кислоте иа железе образуется пассивная пленка. При введении п состав стали элементов, хорошо пассивирующихся в кислоте (N1, Мо). их коррозионная стоГг-кость повышается. Высокой коррозионной стойкостью [c.850]


Смотреть страницы где упоминается термин Железо коррозионная стойкость: [c.75]    [c.89]    [c.32]    [c.694]    [c.197]    [c.239]    [c.270]    [c.290]    [c.321]    [c.305]    [c.808]    [c.811]    [c.818]    [c.843]    [c.848]    [c.55]    [c.78]    [c.294]   
Теория коррозии и коррозионно-стойкие конструкционные сплавы (1986) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Коррозионная стойкость



© 2025 chem21.info Реклама на сайте