Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

неводных средах сильные, титрование

    В этой главе рассматриваются способы приготовления и установления титра стандартных растворов кислот и оснований, а также наиболее важные области применения кислотно-основного титрования в водной и неводной средах. Для наиболее точного оиределения конечной точки титрования необходимо, чтобы изменение pH вблизи точки эквивалентности было резким. Поэтому в качестве титранта выбирают по возможности раствор сильной кислоты или сильного основания. [c.123]


    Число работ, относящихся к этой области неводного титрова-ни , значительно меньше. Это объясняется тем, что многие растворители разрушаются при действии сильных окислителей или восстановителей. Если удалось выбрать устойчивый к реакциям окисления — восстановления растворитель, его нужно очень тщательно очистить от примесей, которые могут окисляться или восстанавливаться. Кроме того, оказалось, что методы окислительно-восстановительного титрования смесей в неводных средах не имеют принципиальных преимуществ перед методами их определения в таком доступном растворителе, как вода. Несмотря на указанные недостатки, исследования продолжают и в этом направлении. Можно привести некоторые примеры. [c.348]

    При анализе соединений основного характера в неводных растворах в качестве титрантов используют растворы хлорной кислоты и хлористого водорода, желательно в тех же растворителях, в которых титруют определяемые вещества использование кетоновых растворов повышает резкость конечной точки титрования. Хлорная кислота -одна из самых сильных в неводной среде, что обусловливает ее широ- [c.302]

    Мы не будем рассматривать здесь различные типы измери тельных ячеек и приборов, выпускаемых промышленностью, и технику работы на них — для этого существуют специальные руководства. Типы кривых осциллометрического титрования в основном сходны с кондуктометрическими. Но в осциллометрии ветви кривых линейны только в том случае, если измерения проводят в области перегиба характеристических кривых и не происходит слишком сильных изменений электропроводности. В противном случае на кривых в большей или меньшей степени возникают плавные изгибы. При проведении измерений в выбранной оптимальной рабочей области получают такую же, а иногда даже большую точность измерений, чем в кондуктометрии. Поэтому области применения осциллометрии и кондуктометрии совпадают, иногда осциллометрия даже более предпочтительна. Это происходит в тех случаях, когда важны такие преимущества осциллометрии, как возможность безэлектродных измерений и увеличение чувствительности с уменьшением диэлектрической проницаемости. Осциллометрик используют для индикации кислотно-основного, осадительного и комплексометрического титрования различных типов, а также при титровании агрессивных растворов и в неводных средах. Она пригодна и для решения различных кинетических проблем при исследовании процессов кристаллизации, растворения (на- пример, гидраргиллита в алюминатном щелоке), омыления, этерификации, полимеризации, самоокисления и т. д. Метод ос-Циллометрии находит применение в фазовом анализе, например при изучении процесса плавления, затвердевания, фазового обмена, расслоения, для построения диаграмм состояния и т.д. Особенно важным является использование осциллометрии для Контроля и регулирования процессов производства. Этот метод пригоден для неразрушающего анализа ряда продуктов или содержимого ампул. [c.336]


    Помехи в этом методе могут создавать кислоты, которые имеют ту же силу, что и салициловая кислота, или сильнее. Более слабые кислоты не мешают определению, так как более сильная салициловая кислота будет титровать связываемый ими амин. Слова слабая и сильная здесь следует употреблять условно, поскольку титрование ведется в неводной среде, для которой константы диссоциации кислот неизвестны. Ангидриды и галогенангидриды кислот мешают определению, так как они способны связывать амины. [c.116]

    Последовательное титрование одной навески лекарственной формы вначале в водной, а затем в неводной среде может быть применено, когда в состав бинарной лекарственной формы входят вещества со слабыми и сильными основными свойствами. [c.150]

    Потенциометрическое титрование может быть с успехом применено не только для титрования растворов, к которым применим индикаторный метод, но и для титрования окрашенных и мутных растворов, когда индикаторные методы титрования применить нельзя. Потенциометрическое титрование широко применяют не только для определения сильных, но и слабых и очень слабых кислот и оснований, смесей кислот или оснований, смесей солей с кислотами или основаниями в неводных средах. Наконец, потенциометрический метод используют для определения pH исследуемых растворов. [c.270]

    Совершенно новым направлением в кулонометрическом титровании в неводных средах является генерирование органических радикалов, которые используют в апротонных растворителях как сильные восстановители. Дифенил в растворе диметилформамида способен восстанавливать антрацен и нитросоединения. [c.46]

    Хорошо известно, например, что при титровании в неводных средах уксусная кислота является слабой кислотой , в то время как сопряженное основание — ацетат-ион представляет собой сильное основание . Анилин — слабое основание, но катионная кислота (ион анилиния), полученная из него в результате присоединения протона, представляет собой сильную кислоту. [c.19]

    В неводных средах и особенно в инертных растворителях стеклянные электроды даже одного и того же образца могут проявлять разные свойства. Эффективность выбранных электродов не всегда удается регулировать или улучшить, вводя вспомогательные электролиты. Свойства электрода сильно зависят от его предварительной обработки. Но, конечно, невозможно знать предысторию каждого стеклянного электрода. В большинстве случаев, однако, электрод перед употреблением оставляют набухать на 12—48 час в растворителе, в котором предполагается его использовать [894]. Эта процедура также необходима для проведения относительных потенциометрических измерений. Все это затрудняет выбор подходящего растворителя трудности особенно возрастают, если, следуя методике, необходимо заменить растворитель в процессе выполнения титрования. Так, может случиться, что стеклянный электрод, предварительно находившийся в уксусном ангидриде, не будет работать безошибочно в среде уксусной кислоты. При титровании хлорной кислотой в уксусной кислоте часто достаточно предварительно погрузить стеклянный электрод на 1—2 час в смесь уксусного ангидрида с уксусной кислотой (1 10). После употребления стеклянный электрод споласкивают вначале чистым растворителем, затем метиловым спиртом и водой и хранят его в дистиллированной воде. [c.171]

    Титрование кислот в неводных растворителях. Сильные минеральные кислоты титруются в среде муравьиной, уксусной и других кислот. Для титрования слабых кислот требуются растворители, обладающие протонакцепторными свойствами и имеющие небольшую константу автопротолиза. Желательна также высокая диэлектрическая проницаемость растворителя. Такими растворителями являются, например, этилендиамин, пиридин, [c.217]

    Титрование в неводной среде позволяет, дифференцировать шесть групп основных азотистых соединений первичный, вторичный и третичный алифатические амины (сильные основм-. ния) и первичные, вторичные и третичные ароматические амины (слабые основания). Для этого применялась следующая методика. После удаления аммиака титрованием того же образца в нитробензоле [231 определяли содержание алифатических и ароматических аминов. Обычно первые присутствовали лишь в небольп ом количестве. В случае присутствия 5, 6, 7, 8-тетрагидрохинолина. его можно было определять тем же титрованием, так как он дает дополнительную ступень потенциала на кривой титрования между другими двумя соединениями. Сумму вторичных и третичных аминов определяли в метилизобутилкетоне [25] после связывания первичных аминов салициловым альдегидом 241. Третичные амины определяли в том же растворителе после превращения первичных и вторичных в неосновные соединения действием уксусцого ангидрида [24, 26]. [c.137]


    Для фиксирования ТЭ применяют визуальные методы (табл. 9.8), но главным образо11 отенциомегрическое титрование. Интервалы перехода окраски цветньк индикаторов сильно изменяются в неводных средах (табл. 9.9), и хотя в принципе многие индикаторы можно применять дпя обнаружения ТЭ, предпочитают потенциометрический метод со стеклянным (или сурьмяным) электродом, теория которого хорошо разработана. [c.59]

    Кислотно-основные флуоресцентные индикаторы (табл. 1) используют для определения pH р-ров и в кислотно-основном титровании. Индикаторы, изменяющие флуоресценцию при низких значениях pH, применяют для титроваш слабых оснований сильными к-тами, при высоких значениях рН-слабых к-т сильными основаниями, при pH 3-10-сильных к-т сильными основаниями, индикаторы, изменяющие флуоресценцию при двух разл. значениях pH,-для титрования многоосновных кислот. Флуоресцентные индикаторы м. б использованы в р-циях нейтрализации, проводимых в неводной среде, напр, нафтиламиносульфамиды для титрования хлорной к-ты в безводной СН3СООН. [c.612]

    Основное преимущество этого метода заключается прежде всего в том, что он позволяет титровать с достаточной четкостью не только сильные кислоты и основания, но также слабые, очень слабые кислоты, основания, их соли и многокомпо-иентные смеси часто без их предварительного разделения. Так, этот метод позволяет определять физиологически активную часть в солях алкалоидов. Кроме того, методом неводного титрования можно определять вещества, плохо растворимые в воде. Нахождение точки конца титрования в неводных средах может осуществляться индикаторным, потенциометрическим, жондуктометрическим, амперометрическим и другим методами. [c.30]

    Описанная выше реакция равновесна. Это ее свойство, вероятно, и послужило причиной того, что ею ранее недостаточно пользовались. Для того чтобы реакция протекала с достаточной полнотой, следует проводить ее в неводной среде допустима только та вода, которая образуется при реакции. Было установлено также, что сильные кислоты разрушают основания Шиффа. Поэтому, если для титрования избыточного амина использовать неорганические кислоты, будет частично титроваться и связанный амин. По этой причине в описываемой ниже методике Сиггиа и Сегаля для титрования избыточного амина применяется салициловая кислота. Константа диссоциации салициловой кислоты составляет 1 10" (в воде), и эта кислота достаточно сильна, чтобы обеспечить удовлетворительное титрование избыточного амина, не вызывая в то же время гидролиз шиффова основания до альдегида и амина. Более сильные кислоты прочно связывают амин, сдвигая равновесие реакции влево, тогда как салициловая кислота не настолько прочно связывает амин, чтобы вызвать обратную реакцию. Само же основание Шиффа значительно слабее исходного амина и не вызывает осложнений при титровании. [c.115]

    Кривые потенциометрического титрования, представленные на эис. 11.7, иллюстрируют применение этого метода для титрования смеси триэгиламнна и пиридина. Из вида кривой 1 можно сделать вывод, что вода является удобной средой для титрования сильных аминов в присутствии слабых аминов, но не наоборот. Так как нейтральные соли увеличивают скачок потенциала при титровании слабых аминов, не оказывая влияния на дифференцирующую способность воды, то концентрированные растворы солей пригодны для анализа смесей слабых и сильных аминов. Титрование такого рода можно осуществить также в недиссоциирующих растворителях, например в ацетонитриле [5] и метилизобутилкетоне [6]. Этими методами в большинстве случаев удается получить сравнимые результаты. Если в неводных средах амины образуют нерастворимые соли, титрование в концентрированных водных растворах солей может иметь определенное преимущество. [c.416]

    Титрование в неводных растворах. Согласно теории Бронстеда, слабая кислота ведет себя как более сильная при растворении ее в жидком аммиаке или пиридине, которые имеют более сильную по сравнению с водой тенденцию к принятию прогона. Подобным же образом слабое основание кажется сильнее при растворении его в таком растворителе, как ледяная уксусная кислота. По этой причине, а также по причине плохой растворимости в воде многих слабых кислот и оснований желательно проводить титрование в различных неводных средах. Иногда это можно выполнить с помощью органических индикаторов, однако часто необходимо проведение потенциометрического титрования [15]. [c.156]

    Потенциометричес кое титрование слабых протолитов (оснований или кислот) особенно удобно тогда, когда они являются очень слабыми и применение индикаторов, меняющих цвет в интервале 2 единиц pH, приводит к значительным ошибкам. Очень подха-дящим является этот метод и для титрования смеси слабых протолитов, например кислот. Однако и в этом случае для получения достаточно точных результатов необходимо, чтобы, как и при титровании многоосновных кислот (см. гл. X), значения /Са. для отдельных кислот различались по меньшей мере на 4 порядка. На кривой титрования П9являются два участка эквивалентности первый — для более сильной кислоты, а второй — для кислоты с меньшим значением /Са. Для смеси кислот. Ка которых различаются менее, чем на 4 порядка, очень хорошие результаты можно получить прй проведении титрования в неводной среде. [c.335]

    В настоящее время интенсивно ведутся исследования по кулонометрическому титрованию в неводной среде. Замена воды как растворителя на смешанные и иеводные растворы дает определенные преимущества. В частности, в неводной среде значительно расширяется рабочая область потенциалов электродов и появляется возможность анализировать образцы, малорастворимые в воде, или использовать реакции, которые протекают в водном растворе с малой скоростью. Анализ работ, опубликованных в последние годы [27] по кулонометрическому титрованию в неводной среде, показывает, что применение ири электрогенерации в качестве титрантов сильных окислителей и восстановителей, не устойчивых в водном растворе, дает хорошие результаты. [c.45]

    В качестве индикаторного электрода используют и стеклянный электрод [375, 666, 670, 807], который применяется преимуш ест-венно в неводной среде [666, 670], где легко фиксируется изменение pH исследуемых растворов, связанное с процессами адсорбции — десорбции ионов гидроксония с поверхности осадка Ag l в точке эквивалентности. Титрование со стеклянным электродом возможно в среде ацетона, диоксана, метанола и этанола. В пиридине, глицерине, этиленгликоле и изобутилметилкетоне не было заметных изменений pH [666]. Возможно титрование хлорид-ионов со стеклянным индикаторным электродом и в водной среде в присутствии тиосульфата натрия на сильном свету [807]. В этом случае в точке эквивалентности анионы З Оз , образованные фотохимическим разложением Ag SjOg, адсорбируются осадком Ag l лучше, чем ионы гидроксония, в результате чего наблюдается резкое изменение pH от 6 до 4 от одной капли титранта. [c.93]

    Для кислотно-основного титрования широко применяют хлорную к-ту, самую сильную к-ту в певодных р-рах. Ее растворы чаще всего используют в качестве титрантов для определения оснований и солей. Прн титровании в кислых растворителях р-ры хлорной к-ты готовят в безводных уксусной, муравьиной и пропионовой к-тах. При использовании гликолевых растворителей хлорную к-ту растворяют в гликолях. Очень часто нсиользуют раствор хлорной к-ты в диоксане нри титровании в среде дифференцирующих растворителей. При титровании в среде кетонов и смесей бензола пли хлороформа с кетонами или ацетонитрилом растворы хлорной к-ты готовят в метил-этилкетоне и других кетонах. Прп кислотно-основном титровании в неводных р-рах прпменяют также иеводные р-ры НС1, H SOj и HNO j, п-толуолсульфо-новой и нек-рых других сульфоновых к-т, хотя по силе они уступают хлорной к-те. Растворы хлорной и других к-т в неводных средах устанавливают ире-им. ио X. ч. карбонату натрия, бифталату калия, тетраборату калия и дифени.тгуанидин г. [c.101]

    Г ри титровании соединений кислого характера в неводных средах в качестве оснований применяют метилаты, этилаты, бутилаты, амилаты щелочных металлов, растворенные в соответствующих спиртах. Более сильными основными титрантами являются амииоэтилат натрия в среде этилендиамина, а также литийалюминийгидрид и лнтийа.тюминийамид в среде тетрагидрофурана. Р-ры пек-рых аминов, в том числе дифенилгуанидина, и-бутиламина, цпклогекспламина и других, также применяют нри титровании неводных р-ров к-т, Титрантами основного характера часто служат спиртовые и эфирные р-ры едких щелочей и уксуснокислые р-ры ацетатов щелочных металлов. Самыми сильными основными титрантами являются гидроокиси четвертичных аммониевых оснований гидроокиси тетраметил-, тетраэтил-, тетрабутилам-моння и нек-рые другие их производные. Р-ры этих титрантов готовят в среде изопропилового спирта или смеси бензола с метиловым спиртом в отношении от 3 1 до 10 1. Стандартизацию растворов оснований в неводных средах производят в основном но х. ч. бензойной и янтарной кислотам. [c.101]

    Целью теории является распространить концепцию кислот и оснований на неводные среды. Например, ацетат натрия, растворенный в ледяной уксусной кислоте, имеет то же отношение к уксусной кислоте, какое NaOH, растворенный в воде, имеет к воде. В обоих растворах титрование сильной кислотой дает первоначальный растворитель. [c.129]

    В практике неводного титрования обычным является применение дифференцирующих растворителей, таких, как кетоны или спирты или их смеси, для раздельного потенциометрического титрования смеси сильных неорганической и органической кислот [1, 2]. В частности, ацетон был применен для раздельного титрования смеси азотной и монохлоруксусной кислот [3]. О раздельном неводном титровании тройной смеси Н3РО4, НКОз и СЫ3СООН в литературе данных нет. В то же время применение неводных растворителей связано с изменением растворимости солей кислот по сравнению с водной средой. Это явление может быть использовано для косвенного определения компонентов титруемой смеси или пх отделения, если осаждение такой соли происходит количественно. Для рассматриваемой смеси фосфат-ион, как можно ожидать, должен давать малорастворимыс соли в неводной среде (кетоны, спирты, их с.меси с водой). [c.56]

    Титранты для неводных сред. а. Хлорная кислота. С тех пор как Конант и Холл впервые продемонстрировали возможность титрования слабых органических оснований в уксуснокислой среде хлорной кислотой, она заняла уникальное положение в неводной, ацидиметрии. Было показано, что в уксуснокислых растворах хлорная кислота является сильной кислотой, значительно более сильной, чем серная или соляная При этом 0,01 н. растворы хлорной кислоты легко готовить и они устойчивы а Кин и Фриц предложили 0,001 н. раствор хлорной кислоты для ультрамикротитрования. В качестве растворителя обычно рекомендуют ледяную уксусную кислоту но были предложены также диоксан и трифторуксусная кислота Если анализируемое основание растворено в смешанном гликоль-углеводородном растворителе, то и хлорную кислоту надо растворять в той же среде. Нельзя забывать, что хлорная кислота является сильным окисляющим средством и обладает взрывоопасными свойствами. Хотя такая опасность исключена при использовании 0,01 н. растворов, склянку для хранения 70%-ной хлорной кислоты нужно тщательно оберегать от попадания в нее восстановителей и металлов. Если 0,01 н. уксуснокислый раствор хлорной кислоты хранится в микробюретке с резервуаром, желательно, чтобы микробюретка была снабжена краном с игольчатым регулирующим клапаном Если используется обычный кран и колбу для титрования встряхивают от руки, необходимо убедиться, что кран не подтекает. Надо также следить за тем, чтобы температура титранта не изменялась, так как ускусная кислота имеет высокий коэффициент объемного расширения [c.396]

    Так как растворители могут оказывать влияние на положение равновесия, успешность определений, проводимых в неводных средах, зависит от выбора растворителя. Особенно большое значение выбор растворителя имеет при титровании очень слабых оснований или кислот, так как с помощью некоторых нейтральных растворителей, например ацетона, метилэтилкетона и метилизобутилкетона, можно дифференцировать слабый основной или кислотный характер соединений. Растворители сильно кислотного характера, например уксусная кислота, или сильно основного характера, например этилендиамин, не только повышают силу слабых или умеренно сильных оснований и кислот, но и выравнивают различия. Это называют выравнивающим эффектом. Именно поэтому при титровании органггческих соединений все чаще используют смеси растворителей. [c.97]

    Ферлендер [852[, а позднее Дитцель и Пауль предложили использовать, протонные кислоты в неполярных растворителях. Применение сульфокислот для титрования в неводных средах представляет интерес, так как сульфо-группа обладает сильными кислотными свойствами. [c.146]

    Применение метода неводного титрования для определения сильных и средней силы органических оснований, содержащ>1х а лот, связано с развитием фармацевтической промышленности стали необходимы анализ сд1е-сей природных органических оснований (алкалоиды, гликоалкалоиды, антибиотики) и количественный контроль за производственным процессом, я также анализ синтетических терапевтических средств, содер>кащих различные типы основных групп. Сейчас можно определить, например, содержание действующего начала в лекарственных препаратах, в которые входят алкалоиды, проследить производственный процесс (экстракция) и проанализировать конечный фармацевтический продукт методами объемного микроанализа. При этом точность результатов титрования в неводных средах [c.288]

    В настоящее время неводные среды используют в аналитической практике для титрования разнообразных неорганических и органических веп1еств и для дифференцированного (раздельного) титрования многокомпонентных смесей солей, кислот и оснований. Благодаря этому возможно титровать не только сильные кислоты и основания, но и слабые и очень слабые кислоты и основания  [c.153]

    Титрование в неводных растворах по методу осаждения. Применение неводных растворителей для титрования по методу осаждения представляет большой интерес, так как под влиянием растворителя сильно изменяется растворимость веществ. Соединение, хорошо растворимое в воде, может оказаться малорастворимым в каком-либо неводном растворителе и, наоборот, соединение, нерастворимое в воде, — хорошо растворимым в органическом растворителе. Например, сульфат и оксалат натрия хорошо растворимы в воде, а в среде безводной уксусной кислоты эти соединения настолько малорастворимы, что становится возможным гравиметрическое определение ионов натрия осаждением их в виде оксалата или сульфата. В среде жидкого аммиака Ag l реагирует с Ва(ЫОз)г с образованием осадка ВаСи-соли, хорошо растворимой в воде, и т. д. [c.449]

    Исследования показали, что ацидиметрическое титрование оксамата в неводных средах не дает положительных результатов, вероятно, из-за сильной дезактивации амидной группы электроноакцепторной слож-ноэфирной группой. [c.59]


Смотреть страницы где упоминается термин неводных средах сильные, титрование: [c.94]    [c.149]    [c.83]    [c.88]    [c.258]    [c.35]    [c.119]    [c.213]    [c.14]    [c.207]    [c.99]    [c.281]    [c.65]    [c.292]    [c.338]   
Основы аналитической химии Часть 2 (1965) -- [ c.76 , c.83 , c.88 , c.107 ]




ПОИСК





Смотрите так же термины и статьи:

Титрование неводное

неводных средах



© 2025 chem21.info Реклама на сайте